Respuesta :

Answer:

y= x + cosx

Step-by-step explanation:

[tex]cosx\frac{\mathrm{d}y }{\mathrm{d} x}+(sinx)y-1=0\\cosx\frac{\mathrm{d}y }{\mathrm{d} x}+(sinx)y=1\\\frac{\mathrm{d}y }{\mathrm{d} x}+(tanx)y=secx[/tex]

now equation is in linear differential form

finding integrating factor;

I.F. = [tex]e^{\int tanx dx} = e^{ln\ secx} = secx[/tex]

[tex]y=\frac{1}{I.F}(\int Q dx + c)[/tex]

[tex]y=\dfrac{1}{secx}(\int secx dx + c)[/tex]

[tex]y=\int  dx + c(cosx)\\y= x + c(cosx)[/tex]

using  y(0) = 1

1 = 0 +  c(cos 0)

c = 1

hence solution becomes

y= x + cosx

ACCESS MORE