Respuesta :
Answer : The values of [tex]\Delta H^o,\Delta S^o\text{ and }\Delta G^o[/tex] are [tex]62.2kJ,132.67J/K\text{ and }22.66kJ[/tex] respectively.
Explanation :
The given balanced chemical reaction is,
[tex]2Ag_2O(s)\rightarrow 4Ag(s)+O_2(g)[/tex]
First we have to calculate the enthalpy of reaction [tex](\Delta H^o)[/tex].
[tex]\Delta H^o=H_f_{product}-H_f_{product}[/tex]
[tex]\Delta H^o=[n_{Ag}\times \Delta H_f^0_{(Ag)}+n_{O_2}\times \Delta H_f^0_{(O_2)}]-[n_{Ag_2O}\times \Delta H_f^0_{(Ag_2O)}][/tex]
where,
[tex]\Delta H^o[/tex] = enthalpy of reaction = ?
n = number of moles
[tex]\Delta H_f^0[/tex] = standard enthalpy of formation
Now put all the given values in this expression, we get:
[tex]\Delta H^o=[4mole\times (0kJ/mol)+1mole\times (0kJ/mol)}]-[2mole\times (-31.1kJ/mol)][/tex]
[tex]\Delta H^o=62.2kJ=62200J[/tex]
conversion used : (1 kJ = 1000 J)
Now we have to calculate the entropy of reaction [tex](\Delta S^o)[/tex].
[tex]\Delta S^o=S_f_{product}-S_f_{product}[/tex]
[tex]\Delta S^o=[n_{Ag}\times \Delta S_f^0_{(Ag)}+n_{O_2}\times \Delta S_f^0_{(O_2)}]-[n_{Ag_2O}\times \Delta S_f^0_{(Ag_2O)}][/tex]
where,
[tex]\Delta S^o[/tex] = entropy of reaction = ?
n = number of moles
[tex]\Delta S_f^0[/tex] = standard entropy of formation
Now put all the given values in this expression, we get:
[tex]\Delta S^o=[4mole\times (42.55J/K.mole)+1mole\times (205.07J/K.mole)}]-[2mole\times (121.3J/K.mole)][/tex]
[tex]\Delta S^o=132.67J/K[/tex]
Now we have to calculate the Gibbs free energy of reaction [tex](\Delta G^o)[/tex].
As we know that,
[tex]\Delta G^o=\Delta H^o-T\Delta S^o[/tex]
At room temperature, the temperature is 298 K.
[tex]\Delta G^o=(62200J)-(298K\times 132.67J/K)[/tex]
[tex]\Delta G^o=22664.34J=22.66kJ[/tex]
Therefore, the values of [tex]\Delta H^o,\Delta S^o\text{ and }\Delta G^o[/tex] are [tex]62.2kJ,132.67J/K\text{ and }22.66kJ[/tex] respectively.