Oxygen enters an insulated 14.2-cm-diameter pipe with a velocity of 60 m/s. At the pipe entrance, the oxygen is at 240 kPa and 20°C; and, at the exit, it is at 200 kPa and 18°C Calculate the rate at which entropy is generated in the pipe.

Respuesta :

Answer:

Entropy generation==0.12 KW/K

Explanation:

[tex]s_2-s_1=C_p\ln \frac{T_2}{T_1}-R\ln \frac{P_2}{P_1}[/tex]

[tex]s_2-s_1=0.891\ln \frac{291}{293}-0.2598\ln \frac{200}{240}[/tex]

[tex]s_2-s_1=0.0412\frac{KJ}{kg-K}[/tex]

Mass flow rate= [tex]\rho\times\dfrac{\pi}{4}d^2V[/tex]

[tex]\rho_1=\dfrac {P_1}{RT_1}[/tex]

[tex]\rho_1=\dfrac {240}{0.2598\times 293}[/tex]

[tex]\rho_1=3.51\frac{kg}{m^3}[/tex]

mass flow rate=[tex]\rho_1A_1V_1[/tex]

So by putting the values

Mass flow rate=2.97 kg/s

So entropy generation=(2.97)(0.0412)

                                    =0.12 KW/K

ACCESS MORE