Answer:
The two integers are 18 and 3.
Step-by-step explanation:
Consider the provided information.
It is given that One integer is 3 more than 5 times another.
Let us consider the integer is x.
Then 3 more than 5 times of x is:
[tex]3+5x[/tex]
The product of the provided two numbers is 54. i.e.
[tex]x(3+5x)=54[/tex]
[tex]3x+5x^2=54[/tex]
[tex]5x^2+3x-54=0[/tex]
Use the formula of the quadratic equation:
For the equation [tex]ax^2+bx+c=0[/tex] the solutions are:
[tex]x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]
By comparing the obtained equation with the above equation, it can be concluded that a = 5, b = 3 and c = -54. Substitute the these values in the above formula.
[tex]x_{1,\:2}=\frac{-3\pm \sqrt{3^2-4\cdot \:5\left(-54\right)}}{2\cdot \:5}[/tex]
[tex]x_{1,\:2}=\frac{-3\pm\sqrt{3^2+4\cdot \:5\cdot \:54}}{2\cdot \:5}[/tex]
[tex]x_{1,\:2}=\frac{-3\pm\sqrt{1089}}{10}[/tex]
[tex]x_{1,\:2}=\frac{-3\pm33}{10}[/tex]
[tex]x_1=\frac{-3+33}{10}[/tex] or [tex]x_2=\frac{-3-33}{10}[/tex]
[tex]x_1=\frac{30}{10}[/tex] or [tex]x_2=\frac{-36}{10}[/tex]
[tex]x_1=3[/tex] or [tex]x_2=\frac{-18}{5}[/tex]
As we have given that numbers are integer, therefore ignore [tex]x_2=\frac{-18}{5}[/tex]
Thus, the value of x is 3 or one number is 3.
Then 3 more than 5 times of x is: 3 + 5(3) = 18.
Therefore, the two integers are 18 and 3.