Answer: The mean number of checks written per day = [tex]\lambda=0.3507[/tex]
[tex]\text{Variance}(\sigma^2)=\lambda=0.3507[/tex]
[tex]\text{Standard deviation}=0.5922[/tex]
Step-by-step explanation:
Given : A person wrote 128 checks in last year.
Consider , the last year is a no-leap year.
The number of days in ;last year = 365 days
Let X be the number of checks in one day.
Then , [tex]X=\dfrac{128}{365}=0.350684931507\approx0.3507[/tex]
The mean number of checks written per day = [tex]\lambda=0.3507[/tex]
Now X follows Poisson distribution with parameter [tex]\lambda=0.3507[/tex].
Then , [tex]\text{Variance}(\sigma^2)=\lambda=0.3507[/tex]
[tex]\Rightarrow\sigma=\sqrt{\lambda}=\sqrt{0.3507}=0.59219929078\approx0.5922[/tex]