Respuesta :
Answer:
a.A+B can not find out
b.[tex] A\times B[/tex]=[tex]\left[\begin{array}{ccc}13&8&11\\17&10&13\end{array}\right][/tex]
[tex]A\times B[/tex]=[tex]\left[\begin{array}{ccc}a_1b_1+a_2b_4+a_3b_7&a_1b_2+a_2b_5+a_3b_8&a_1b_3+a_2b_6+a_3b_9\\a_4b_1+a_5b_4+a_6b_7&a_4b_2+a_5b_5+a_6b_8&a_4b_3+a_5b_6+a_6b_9\\a_7b_1+a_8b_4+a_9b_7&a_7b_2+a_8b_2+a_8b_5+a_9b_8&a_a_7b-3+a_8b_6+a_9b_9\end{array}\right][/tex]
[tex]A\times B[/tex]=[tex]\left[\begin{array}{ccc}a_1b_1+a_2b_3&a_1b_2+a_2b_4\\a_3b_1+a_4b_3&a_3b_2+a_4b_4\end{array}\right][/tex]
In similar way multiply two matrix of order [tex]4\times 4[/tex]
c.No,because A is not a square matrix and determinant of B is zero.
Step-by-step explanation:
We are given that two matrix
A=[tex]\left[\begin{array}{ccc}1&3&1\\2&3&2\end{array}\right][/tex]
B=[tex]\left[\begin{array}{ccc}2&1&1\\3&2&3\\2&1&1\end{array}\right][/tex]
In matrix A , two rows and 3 columns therefore, the order of matrix [tex] 2\times 3[/tex]
In matrix B, 3 rows and 3 columns therefore, the order of matrix B is [tex] 3\times 3[/tex]
a.A+B can no find because when add two matrix then the order of two matrix should be same .
b.[tex] A\times B[/tex]
When we multiply on matrix to other matrix then number of columns of first matrix equals to number of rows of second matrix.
Therefore, number of columns of matrix A is equals to number of rows of matrix B.So, we can multiply
[tex] A\times B[/tex]=[tex]\left[\begin{array}{ccc}1&3&1\\2&3&2\end{array}\right][/tex]\times[tex]\left[\begin{array}{ccc}2&1&1\\3&2&3\\2&1&1\end{array}\right][/tex]
[tex] A\times B[/tex]=[tex]\left[\begin{array}{ccc}13&8&11\\17&10&13\end{array}\right][/tex]
Formula for multiply of matrix of order [tex]3\times3 [/tex]
Let A and B are square matrix of order [tex] 3\times 3[/tex]
Let A=[tex]\left[\begin{array}{ccc}a_1&a_2&a_3\\a_4&a_5&a_6\\a_7&a_8&a_9\end{array}\right][/tex] and B=[tex]\left[\begin{array}{ccc}b_1&b_2&b_3\\b_4&b_5&b_6\\b_7&b_8&b_9\end{array}\right][/tex]
[tex]A\times B[/tex]=[tex]\left[\begin{array}{ccc}a_1b_1+a_2b_4+a_3b_7&a_1b_2+a_2b_5+a_3b_8&a_1b_3+a_2b_6+a_3b_9\\a_4b_1+a_5b_4+a_6b_7&a_4b_2+a_5b_5+a_6b_8&a_4b_3+a_5b_6+a_6b_9\\a_7b_1+a_8b_4+a_9b_7&a_7b_2+a_8b_2+a_8b_5+a_9b_8&a_a_7b-3+a_8b_6+a_9b_9\end{array}\right][/tex]
In similar way we multiply of matrix of order [tex]2\times2[/tex] and matrix multiply of order [tex]4\times 4[/tex]
Let A and B are matrix of order [tex]2\times 2[/tex]
Let[tex]A=\left[\begin{array}{ccc}a_1&a_2\\a_3&a_4\end{array}\right][/tex]
[tex]B=\left[\begin{array}{ccc}b_1&b_2\\b_3&b_4\end{array}\right][/tex]
[tex]A\times B[/tex]=[tex]\left[\begin{array}{ccc}a_1b_1+a_2b_3&a_1b_2+a_2b_4\\a_3b_1+a_4b_3&a_3b_2+a_4b_4\end{array}\right][/tex]
In similar way we multiply two matrix of order [tex] 4\times 4[/tex]
C.Matrix A is not a square matrix .Therefore, it is not a invertible matrix.
[tex]\mid B\mid=\begin{vmatrix}2&1&1\\3&2&3\\2&1&1\end{vmatrix}[/tex]
[tex]\mid B\mid=2(2-3)-1(3-6)+1(3-4)=-2+3-1=0[/tex]
Therefore, the determinant of B is equal to zero therefore, inverse of matrix B does not exist.
Hence, Both matrix A and B are no invertible.