Let T: P_3 rightarrow P_3 be the linear transformation satisfying T(1) = 2x^2 + 2, T(x) = 4x - 9, T(x^2) = -4x^2 + x - 2. Find the image of an arbitrary quadratic polynomial ax^2 + bx + C. T(ax^2 + bx + c) =

Respuesta :

Answer:

[tex]T(ax^2+bx+c)=(-4a+2c)x^2+(a+4b)x-2a-9b+2c[/tex]

Step-by-step explanation:

Let T:[tex]P_3\rightarrow P_3[/tex] be the linear transformation

[tex]T(1)=2x^2+2[/tex]

[tex]T(x)=4x-9[/tex]

[tex]T(x^2)=-4x^2+x-2[/tex]

We have to find the image of an arbitrary quadratic polynomial

[tex]ax^2+bx+c[/tex]

We know that linear transformation satisfied the property

[tex]T(ax+by)=a T(x)+b T(y)[/tex]

Therefore, [tex]T(ax^2+bx+c= a T(x^2)+b T(x)+ c T(1)[/tex]

Substitute all given  values in right place

[tex]T(ax^2+bx+c)=a (-4x^2+x-2)+b(4x-9)+c(2x^2+2)[/tex]

[tex]T(ax^2+bx+c)=(-4a+2c)x^2+(a+4b)x-2a-9b+2c[/tex]

Hence, the image of an arbitrary quadratic polynomial

[tex]T(ax^2+bx+c)=(-4a+2c)x^2+(a+4b)x-2a-9b+2c[/tex].

RELAXING NOICE
Relax