Answer:
[tex]T(ax^2+bx+c)=(-4a+2c)x^2+(a+4b)x-2a-9b+2c[/tex]
Step-by-step explanation:
Let T:[tex]P_3\rightarrow P_3[/tex] be the linear transformation
[tex]T(1)=2x^2+2[/tex]
[tex]T(x)=4x-9[/tex]
[tex]T(x^2)=-4x^2+x-2[/tex]
We have to find the image of an arbitrary quadratic polynomial
[tex]ax^2+bx+c[/tex]
We know that linear transformation satisfied the property
[tex]T(ax+by)=a T(x)+b T(y)[/tex]
Therefore, [tex]T(ax^2+bx+c= a T(x^2)+b T(x)+ c T(1)[/tex]
Substitute all given values in right place
[tex]T(ax^2+bx+c)=a (-4x^2+x-2)+b(4x-9)+c(2x^2+2)[/tex]
[tex]T(ax^2+bx+c)=(-4a+2c)x^2+(a+4b)x-2a-9b+2c[/tex]
Hence, the image of an arbitrary quadratic polynomial
[tex]T(ax^2+bx+c)=(-4a+2c)x^2+(a+4b)x-2a-9b+2c[/tex].