Respuesta :

Answer with Step-by-step explanation:

Let A element of [tex]M_n[/tex](R) be a diagonalizable matrix with [tex]tr(A^2)=0[/tex] given

We have to prove that A is the zero matrix

Le A=[tex]\left[\begin{array} {ccc}a_{11}&0&0\\0&a_{22}&0\\0&0&a_{33}\end{array}\right][/tex]  be any  matrix of order[tex]3\times 3[/tex]

Trace : Trace is defined as the sum of diagonal elements of a matrix.

[tex]A\times A=A^2=\left[\begin{array}{ccc}a_{11}&0&0\\0&a_{22}&0\\0&0&a_{33}\end{array}\right]\times \left[\begin{array}{ccc}a_{11}&0&0\\0&a_{22}&0\\0&0&a_{33}\end{array}\right][/tex]

[tex]A^2=\left[\begin{array} {ccc}a^2_{11}&0&0\\0&a^2_{22}&0\\0&0&a^2_{33}\end{array}\right][/tex]

Therefore, [tex]tr(a^2_{11}+a^2_{22}+a^2_{33})=0[/tex]

We know that  square of an positive or negative element is positive

Therefore, it is necessary that [tex]a_{11}=0,a_{22}=0,a_{33}=0[/tex] when tr([tex]A^2)[/tex]=0

When all elements of matrix are zero then the matrix should be zero matrix.

Hence, A is a zero matrix .