Respuesta :
Answer:
[tex](3 \sqrt{2} ,135 \degree) \: \: and \: \: (3 \sqrt{2} ,315 \degree)[/tex]
Step-by-step explanation:
Polar coordinates are of the form:
[tex](r,\theta)[/tex]
where
[tex]r = \sqrt{ {x}^{2} + {y}^{2} } [/tex]
and
[tex] \theta = \tan^{ - 1} ( \frac{y}{x} )[/tex]
The given rectangular coordinates are: (3,-3).
[tex]r = \sqrt{ {3}^{2} + {( - 3)}^{2} } [/tex]
[tex]r = \sqrt{9 + 9} = \sqrt{18} [/tex]
[tex]r = 3 \sqrt{2} [/tex]
[tex]\theta = \tan^{ - 1} ( \frac{ - 3}{3} )[/tex]
[tex]\theta = \tan^{ - 1} ( - 1 )[/tex]
[tex]\theta =135 \degree \: \: or \: \: 315 \degree[/tex]
The two polar coordinates are:
[tex](3 \sqrt{2} ,135 \degree) \: \: and \: \: (3 \sqrt{2} ,315 \degree)[/tex]
Answer:
[tex]\left ( 3\sqrt{2},135^{\circ} \right )\,,\,\left ( 3\sqrt{2},315^{\circ} \right )[/tex]
Step-by-step explanation:
Let (x,y) be the rectangular coordinates of the point.
Here, [tex](x,y)=(3,-3)[/tex]
Let polar coordinates be [tex](r,\theta )[/tex] such that [tex]r=\sqrt{x^2+y^2}\,,\,\theta =\arctan \left ( \frac{y}{x} \right )[/tex]
[tex]r=\sqrt{3^2+(-3)^2}=\sqrt{18}=3\sqrt{2}[/tex]
[tex]\theta =\arctan \left ( \frac{-3}{3} \right )= \arctan (-1)[/tex]
We know that tan is negative in first and fourth quadrant, we get
[tex]\theta =\pi-\frac{\pi}{4}=\frac{3\pi}{4}=135^{\circ}\\\theta =2\pi-\frac{\pi}{4}=\frac{7\pi}{4}=315^{\circ}[/tex]
So, polar coordinates are [tex]\left ( 3\sqrt{2},135^{\circ} \right )\,,\,\left ( 3\sqrt{2},315^{\circ} \right )[/tex]