This statement is false.
Since, for two matrices A and B , the expansion of the term:
[tex](A+B)^2[/tex] is given by:
[tex](A+B)^2=(A+B)(A+B)\\\\i.e.\\\\(A+B)^2=A^2+B\cdot A+A\cdot B+B^2[/tex]
Also, we know that when two matrix A and B commute then we have:
[tex]A\cdot B=B\cdot A[/tex]
Hence, we get the expression as:
[tex](A+B)^2=A^2+2A\cdot B+B^2[/tex]
But when two matrix A and B do not commute then we need not have:
[tex](A+B)^2=A^2+2A\cdot B+B^2[/tex]