Answer: (110.22, 125.78)
Step-by-step explanation:
The confidence interval for the population mean is given by :-
[tex]\mu\ \pm z_{\alpha/2}\times\dfrac{\sigma}{\sqrt{n}}[/tex]
Given : Sample size = 463
[tex]\mu=118\text{ minutes}[/tex]
[tex]\sigma=65\text{ minutes}[/tex]
Significance level : [tex]\alpha=1-0.99=0.01[/tex]
Critical value : [tex]z_{\alpha/2}=z_{0.005}=\pm2.576[/tex]
We assume that the population is normally distributed.
Now, the 90% confidence interval for the population mean will be :-
[tex]118\ \pm\ 2.576\times\dfrac{65}{\sqrt{463}} \\\\\approx118\pm7.78=(118-7.78\ ,\ 118+7.78)=(110.22,\ 125.78)[/tex]
Hence, 99% confidence interval for the mean study time of all first-year students = (110.22, 125.78)