Step-by-step explanation:
[tex]x_{1} + x_{2} + x_{3} + x_{4} + x_{5} = 21\\[/tex] (given)
Let us consider :
[tex]x_{1}[/tex] = [tex]t_{1} + 1[/tex]
[tex]x_{2}[/tex] = [tex]t_{2}[/tex]
[tex]x_{3}[/tex] = [tex]t_{3}[/tex]
[tex]x_{4}[/tex] = [tex]t_{4}[/tex]
[tex]x_{5}[/tex] = [tex]t_{5}[/tex]
Now, by substituting the above considerations in the above equation, we get:
[tex]t_{1} + 1 + t_{2} + t_{3} + t_{4} + t_{5} = 21\\[/tex]
[tex]t_{1} + t_{2} + t_{3} + t_{4} + t_{5} = 20\\[/tex]
where,
[tex]t_{i}[/tex] [tex]\geq[/tex] 1
then it follows
n = 20
r = 4
then no. of solutions for the eqn = [tex]_{r}^{n + r}\textrm{C}[/tex]
= [tex]_{4}^{24}\textrm{C}[/tex]
= 10626
Answer :
no. of solutions for the eqn 10626