How many solutions does the equation x_1 +x_2+x_3+x_4+x_5=21 have where x_1, x_2, x_3, x_4, and x_5 are nonnegative integers and x_1 >= 1?

Respuesta :

Step-by-step explanation:

[tex]x_{1} + x_{2} + x_{3} + x_{4} + x_{5} = 21\\[/tex]     (given)

Let us consider :

[tex]x_{1}[/tex] = [tex]t_{1} + 1[/tex]

[tex]x_{2}[/tex] = [tex]t_{2}[/tex]

[tex]x_{3}[/tex] = [tex]t_{3}[/tex]

[tex]x_{4}[/tex]  = [tex]t_{4}[/tex]

[tex]x_{5}[/tex] = [tex]t_{5}[/tex]

Now, by substituting the above considerations in the above equation, we get:

[tex]t_{1} + 1 + t_{2} + t_{3} + t_{4} + t_{5} = 21\\[/tex]

[tex]t_{1}  + t_{2} + t_{3} + t_{4} + t_{5} = 20\\[/tex]

where,

[tex]t_{i}[/tex] [tex]\geq[/tex] 1

then it follows

n = 20

r = 4

then no. of solutions for the eqn = [tex]_{r}^{n + r}\textrm{C}[/tex]

                                                      = [tex]_{4}^{24}\textrm{C}[/tex]

                                                      = 10626

Answer :

no. of solutions for the eqn 10626

ACCESS MORE