Math help ASAP!!!!!!!!!!
![Math help ASAP class=](https://us-static.z-dn.net/files/dbf/c96b8787d5c9afe961d4785bd1611399.png)
Answer:
(r+s) (x) = 4x+3
(r*s) (x) = 3x^2 +x-4
(r-s) (-1) = -3
Step-by-step explanation:
r(x) = x-1
s(x) = 3x+4
(r+s) (x) = x-1 + 3x+4
Combine like terms
= 4x+3
(r*s) (x) = ( x-1) ( 3x+4)
FOIL
= 3x^2 +4x-3x-4
= 3x^2 +x-4
(r-s) (x) = x-1 - (3x+4)
Distribute the minus sign
=x-1-3x-4
=-2x-5
Let x = -1
(r-s) (-1) = -2(-1) -5
2-5
-3
Answer:
[tex](r + s)(x)=4x+3[/tex]
[tex](r * s)(x)=3x^2+x-4[/tex]
[tex](r - s)(-1)=-3[/tex]
Step-by-step explanation:
We know that:
[tex]r(x) =x-1\\s(x)=3x+4[/tex]
To find [tex](r + s) (x)[/tex] we add the function [tex]r (x)[/tex] with the function [tex]s (x)[/tex]
So
[tex](r + s)(x)=r(x)+s(x)[/tex]
[tex](r + s)(x)=x-1 + 3x+4[/tex]
[tex](r + s)(x)=4x+3[/tex]
To find [tex](r * s) (x)[/tex] we multiply the function [tex]r (x)[/tex] with the function [tex]s (x)[/tex]
So
[tex](r *s)(x)=r(x)*s(x)[/tex]
[tex](r * s)(x)=(x-1)(3x+4)[/tex]
Using the distributive property we have left that
[tex](r * s)(x)=3x^2+4x-3x-4[/tex]
[tex](r * s)(x)=3x^2+x-4[/tex]
To find [tex](r - s) (-1)[/tex] we subtract the function [tex]r (x)[/tex] with the function [tex]s (x)[/tex] and then evaluate in (-1)
Then:
[tex](r - s)(-1)=r(x)-s(x)[/tex]
[tex](r - s)(-1)=x-1 - (3x+4)[/tex]
[tex](r - s)(-1)=x-1-3x-4[/tex]
[tex](r - s)(-1)=-2x-5[/tex]
[tex](r - s)(-1)=-2(-1)-5[/tex]
[tex](r - s)(-1)=2-5[/tex]
[tex](r - s)(-1)=-3[/tex]