Respuesta :

Answer:

general solution=[tex]e^{-\frac{1}{2} x}(Acos\frac{3}{2} x+Bsin\frac{3}{2}x)[/tex]+5

Step-by-step explanation:

using linear differential equation method

y'' + y' + y = 5

writing down the characteristics equation.

[tex]m^2+m+1=0[/tex]

using quadratic formula

[tex]m=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

we get

[tex]m=\frac{-1\pm \sqrt{1^2-4(1)(1)}}{2(1)}[/tex]

[tex]m=-\frac{1}{2} \pm \frac{3}{2} i[/tex]

now Complementary function(CF)

[tex]y=e^{ax}(Acosbx+Bsinbx)\\y=e^{-\frac{1}{2} x}(Acos\frac{3}{2} x+Bsin\frac{3}{2}x)[/tex]

now for particular integrals

[tex]D^2y+Dy+y=5\\(D^2+D+1)y=5\\y=\frac{5}{D^2+D+1}[/tex]

[tex]P.I.=\frac{5\times e^{0x} }{D^2+D+1}[/tex]

putting D=0

we get

P.I.=5

general solution=CF+PI

general solution=[tex]e^{-\frac{1}{2} x}(Acos\frac{3}{2} x+Bsin\frac{3}{2}x)[/tex]+5

ACCESS MORE