Answer:
general solution=[tex]e^{-\frac{1}{2} x}(Acos\frac{3}{2} x+Bsin\frac{3}{2}x)[/tex]+5
Step-by-step explanation:
using linear differential equation method
y'' + y' + y = 5
writing down the characteristics equation.
[tex]m^2+m+1=0[/tex]
using quadratic formula
[tex]m=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]
we get
[tex]m=\frac{-1\pm \sqrt{1^2-4(1)(1)}}{2(1)}[/tex]
[tex]m=-\frac{1}{2} \pm \frac{3}{2} i[/tex]
now Complementary function(CF)
[tex]y=e^{ax}(Acosbx+Bsinbx)\\y=e^{-\frac{1}{2} x}(Acos\frac{3}{2} x+Bsin\frac{3}{2}x)[/tex]
now for particular integrals
[tex]D^2y+Dy+y=5\\(D^2+D+1)y=5\\y=\frac{5}{D^2+D+1}[/tex]
[tex]P.I.=\frac{5\times e^{0x} }{D^2+D+1}[/tex]
putting D=0
we get
P.I.=5
general solution=CF+PI
general solution=[tex]e^{-\frac{1}{2} x}(Acos\frac{3}{2} x+Bsin\frac{3}{2}x)[/tex]+5