Answer: The range is 13. The mean is 10. The standard deviation is 4.62 .
Step-by-step explanation:
The given data : 3, 6, 9, 11, 15, 16
Total number of data values : n = 6
The mean of data is given by :-
[tex]\overline{x}=\dfrac{\sum^6_{i=1}x_i}{n}\\\\\Rightarrow\overline{x}=\dfrac{60}{6}=10[/tex]
The standard deviation is given by :-
[tex]\sqrt{\dfrac{1}{n}(\sum^6_{i=1}(x_i-\overline{x})^2)}\\\\=\sqrt{\dfrac{1}{6}(\sum^6_{i=1}(x_i-10)^2)}\\\\=\sqrt{\dfrac{1}{6}\times(49+16+1+1+25+36)}=4.61880215352\approx4.62[/tex]
The range of the data : Maximum value -Minimum value
[tex]=16-3=13[/tex]