Respuesta :
Answer : The percent of the carbon−14 left is, 0.242 %
Explanation :
This is a type of radioactive decay and all radioactive decays follow first order kinetics.
To calculate the rate constant, we use the formula :
[tex]k=\frac{0.693}{t_{1/2}}[/tex]
[tex]k=\frac{0.693}{5.73\times 10^3\text{ years}}[/tex]
[tex]k=1.205\times 10^{-4}\text{ years}^{-1}[/tex]
Now we have to calculate the amount left.
Expression for rate law for first order kinetics is given by :
[tex]k=\frac{2.303}{t}\log\frac{a}{a-x}[/tex]
where,
k = rate constant = [tex]1.205\times 10^{-4}\text{ years}^{-1}[/tex]
t = time taken for decay process = 50000 years
a = initial amount or moles of the reactant = 7 g
a - x = amount or moles left after decay process = ?
Putting values in above equation, we get:
[tex]1.205\times 10^{-4}=\frac{2.303}{50000\text{ years}}\log\frac{7g}{a-x}[/tex]
[tex]a-x=0.0169g[/tex]
The amount left of carbon-14 = 0.0169 g
Now we have to calculate the percent of the carbon−14 left.
[tex]\text{Percent of carbon}-14\text{ left}=\frac{\text{Amount left of carbon}-14}{\text{Original amount of carbon}-14}\times 100[/tex]
[tex]\text{Percent of carbon}-14\text{ left}=\frac{0.0169g}{7g}\times 100=0.242\%[/tex]
Therefore, the percent of the carbon−14 left is, 0.242 %