Respuesta :

Answer:

The division for the provided expression is:[tex]w-2-\frac{1}{w+1}[/tex].

Step-by-step explanation:

Consider the provided polynomial expression:

[tex]\frac{w^2-w-3}{w+1}[/tex]

Apply the long division.

Divide the leading coefficients of the numerator [tex]w^2-w-3[/tex] and the divisor [tex]w+1\mathrm{\::\:}\frac{w^2}{w}=w[/tex]

Therefore the quotient is w.

Multiply [tex]w+1\mathrm{\:by\:}w:\:w^2+w[/tex]

Subtract [tex]w^2+w[/tex] from [tex]w^2-w-3[/tex] to get new remainder.

Thus, the remainder is [tex]-2w-3[/tex]

Therefore,

[tex]\frac{w^2-w-3}{w+1}=w+\frac{-2w-3}{w+1}[/tex]......(1)

Divide the leading coefficient of the numerator [tex]-2w-3[/tex] and the divisor [tex]w+1\mathrm{\::\:}\frac{-2w}{w}=-2[/tex]

Thus the quotient is -2

Now, multiply [tex]w+1[/tex] by -2 which gives [tex]-2w-2[/tex].

Subtract [tex]-2w-2[/tex] from [tex]-2w-3[/tex] to get new remainder.

Thus, the remainder is -1

Therefore, [tex]\frac{-2w-3}{w+1}=-2+\frac{-1}{w+1}[/tex]

Now replace the value of [tex]\frac{-2w-3}{w+1}=-2+\frac{-1}{w+1}[/tex] in equation 1.

Thus, we get [tex]w-2-\frac{1}{w+1}[/tex].

Therfore, the division for the provided expression is [tex]w-2-\frac{1}{w+1}[/tex].

ACCESS MORE