Answer:386
Step-by-step explanation:
We have given
Smoothing parameter [tex]\left ( \alpha \right )=0.56[/tex]
Forecasted demand[tex]\left ( F_t\right )=385[/tex]
Actual demand[tex]\left ( D_t\right )=386[/tex]
And Forecast is given by
[tex]F_{t+1}=\alpha D_t+\left ( 1-\alpha \right )F_t[/tex]
[tex]F_{t+1}=0.56\cdot 386+\left ( 1-0.56\right )385=385.56\approx 386[/tex]
[tex]F_{t+2}=0.56\cdot 386+\left ( 1-0.56\right )385.56=385.806\approx 386[/tex]
[tex]F_{t+3}=0.56\cdot 386+\left ( 1-0.56\right )385.806=385.914\approx 386[/tex]
[tex]F_{t+4}=0.56\cdot 386+\left ( 1-0.56\right )385.914=385.962\approx 386[/tex]