Respuesta :

Answer:

0.1788 ,180°,90°,60°

Explanation:

CONVERSION FROM DEGREE TO RADIANS: For converting degree to radian we have to multiply with [tex]\frac{\pi}{180}[/tex]

using this concept 10.25°=10.25×[tex]\frac{\pi}{180}[/tex]=0.1788

CONVERSION FROM RADIAN TO DEGREE: For converting radian to degree we have to multiply with[tex]\frac{180}{\pi}[/tex]

using this concept π=π×[tex]\frac{180}{\pi}[/tex]

                                  =180°

  [tex]\frac{\pi}{2}[/tex]= [tex]\frac{\pi}{2}[/tex×[tex]\frac{180}{\pi}[/tex]

                                    =90°

  [tex]\frac{\pi}{3}[/tex]= [tex]\frac{\pi}{3}[/tex]×[tex]\frac{180}{\pi}[/tex]

                                    =60°

Answer:

10.25° = 0.1790 radians

π radians = 180°

π/2 radians = 90°

π/3 radians = 60°

Explanation:

The conversion of degree into radians is shown below:

1° = π/180 radians

So,

10.25° = (π/180)*10.25 radians

Also, π = 22/7

So,

[tex]10.25^0=\frac{22\times10.25}{7\times180}radians[/tex]

Solving it we get,

10.25° = 0.1790 radians

The conversion of radians into degree is shown below:

1 radian = 180/π°

(a)

π radians = (180/π)*π°

Thus,

π radians = 180°

(b)

π/2 radians = (180/π)*(π/2)°

[tex]\frac {\pi }{2} radians=\frac{180}{\not {\pi }} \times \frac{\not {\pi }}{2}^0[/tex]

π/2 radians = 90°

(c)

π/3 radians = (180/π)*(π/3)°

[tex]\frac {\pi }{3} radians=\frac{180}{\not {\pi }} \times \frac{\not {\pi }}{3}^0[/tex]

π/3 radians = 60°