Respuesta :
Answer:
0.1788 ,180°,90°,60°
Explanation:
CONVERSION FROM DEGREE TO RADIANS: For converting degree to radian we have to multiply with [tex]\frac{\pi}{180}[/tex]
using this concept 10.25°=10.25×[tex]\frac{\pi}{180}[/tex]=0.1788
CONVERSION FROM RADIAN TO DEGREE: For converting radian to degree we have to multiply with[tex]\frac{180}{\pi}[/tex]
using this concept π=π×[tex]\frac{180}{\pi}[/tex]
=180°
[tex]\frac{\pi}{2}[/tex]= [tex]\frac{\pi}{2}[/tex×[tex]\frac{180}{\pi}[/tex]
=90°
[tex]\frac{\pi}{3}[/tex]= [tex]\frac{\pi}{3}[/tex]×[tex]\frac{180}{\pi}[/tex]
=60°
Answer:
10.25° = 0.1790 radians
π radians = 180°
π/2 radians = 90°
π/3 radians = 60°
Explanation:
The conversion of degree into radians is shown below:
1° = π/180 radians
So,
10.25° = (π/180)*10.25 radians
Also, π = 22/7
So,
[tex]10.25^0=\frac{22\times10.25}{7\times180}radians[/tex]
Solving it we get,
10.25° = 0.1790 radians
The conversion of radians into degree is shown below:
1 radian = 180/π°
(a)
π radians = (180/π)*π°
Thus,
π radians = 180°
(b)
π/2 radians = (180/π)*(π/2)°
[tex]\frac {\pi }{2} radians=\frac{180}{\not {\pi }} \times \frac{\not {\pi }}{2}^0[/tex]
π/2 radians = 90°
(c)
π/3 radians = (180/π)*(π/3)°
[tex]\frac {\pi }{3} radians=\frac{180}{\not {\pi }} \times \frac{\not {\pi }}{3}^0[/tex]
π/3 radians = 60°