Calculate the magnitude of the angular momentum of the Mars in a circular orbit around the sun. The Mars has mass 6.42×1023 kg , radius 3.40×106 m , and orbit radius 2.28×1011 m . The planet completes one rotation on its axis in 24.5 hours and one orbit in 687 days.

Respuesta :

Answer:

The magnitude of the angular momentum of the Mars in a circular orbit around the sun is [tex]3.53\times10^{39}\ kg-m^2/s[/tex]

Explanation:

Given that,

Mass of mars [tex]M=6.42\times10^{23}\ kg[/tex]

Radius [tex]r'= 3.40\times10^{6}[/tex]

Orbit radius [tex]r=2.28\times10^{11}\ m[/tex]

Time period = 687 days

We need to calculate the magnitude of the angular momentum of the mars

Using formula of angular momentum

[tex]L = I\omega[/tex]

Here, [tex] I = mr^2[/tex]

[tex] L=mr^2\omega[/tex]

[tex] L=mr^2\times\dfrac{2\pi}{T}[/tex]

Where,

L = angular momentum

I = moment of inertia

r = radius

[tex]\omega[/tex]=angular speed

Put the value into the formula

[tex]L=6.42\times10^{23}\times(2.28\times10^{11})^2\times\dfrac{2\pi}{687\times24\times3600}[/tex]

[tex]L=3.53\times10^{39}\ kg-m^2/s[/tex]

Hence, The magnitude of the angular momentum of the Mars in a circular orbit around the sun is [tex]3.53\times10^{39}\ kg-m^2/s[/tex]