Answer:
The magnitude of the angular momentum of the Mars in a circular orbit around the sun is [tex]3.53\times10^{39}\ kg-m^2/s[/tex]
Explanation:
Given that,
Mass of mars [tex]M=6.42\times10^{23}\ kg[/tex]
Radius [tex]r'= 3.40\times10^{6}[/tex]
Orbit radius [tex]r=2.28\times10^{11}\ m[/tex]
Time period = 687 days
We need to calculate the magnitude of the angular momentum of the mars
Using formula of angular momentum
[tex]L = I\omega[/tex]
Here, [tex] I = mr^2[/tex]
[tex] L=mr^2\omega[/tex]
[tex] L=mr^2\times\dfrac{2\pi}{T}[/tex]
Where,
L = angular momentum
I = moment of inertia
r = radius
[tex]\omega[/tex]=angular speed
Put the value into the formula
[tex]L=6.42\times10^{23}\times(2.28\times10^{11})^2\times\dfrac{2\pi}{687\times24\times3600}[/tex]
[tex]L=3.53\times10^{39}\ kg-m^2/s[/tex]
Hence, The magnitude of the angular momentum of the Mars in a circular orbit around the sun is [tex]3.53\times10^{39}\ kg-m^2/s[/tex]