Respuesta :
Answer : The energy for vacancy formation in silver is, [tex]1.762\times 10^{-19}J[/tex]
Explanation :
Formula used :
[tex]N_v=N\times e^{(\frac{-E}{K\times T})}[/tex]
or,
[tex]N=\frac{N_A\times \rho}{M}[/tex]
So,
[tex]N_v=[\frac{N_A\times \rho}{M}]\times e^{(\frac{-E}{K\times T})}[/tex]
where,
[tex]N_v[/tex] = equilibrium number of vacancies = [tex]3.6\times 10^{23}m^{-3}=3.6\times 10^{20}L^{-1}[/tex]
E = energy = ?
M = atomic weight = 107.9 g/mole
[tex]N_A[/tex] = Avogadro's number = [tex]6.022\times 10^{23}mol^{-1}[/tex]
[tex]\rho[/tex] = density = [tex]9.5g/cm^3=9.5g/ml=9500g/L[/tex]
T = temperature = [tex]800^oC=273+800=1073K[/tex]
K = Boltzmann constant = [tex]1.38\times 10^{-23}J/K[/tex]
Now put all the given values in the above formula, we get:
[tex]3.6\times 10^{20}L^{-1}=[\frac{(6.022\times 10^{23}mol^{-1})\times 9500g/L}{107.9g/mol}]\times e^{[\frac{-E}{(1.38\times 10^{-23}J/K)\times 1073K}]}[/tex]
[tex]E=1.762\times 10^{-19}J[/tex]
Therefore, the energy for vacancy formation in silver is, [tex]1.762\times 10^{-19}J[/tex]
Answer:
The energy for vacancy formation in silver is 1.1 ev/atom
Explanation:
The total number of sites is equal to:
[tex]N=\frac{N_{A} \rho }{A}[/tex]
Where
NA = Avogadro´s number = 6.023x10²³atom/mol
A = atomic weight of silver = 107.9 g/mol
ρ = density of silver = 9.5 g/cm³
Replacing:
[tex]N=\frac{6.023x10^{23}*9.5 }{107.9} =5.3x10^{22} atom/cm^{3} =5.3x10^{28} m^{-3}[/tex]
The energy for vacancy is equal:
[tex]Q=-RTln(\frac{N_{v} }{N} )[/tex]
Where
R = 8.314 J/mol K = 8.614x10⁻⁵ev/atom K
T = 800°C = 1073 K
Nv = number of vacancy = 3.6x10²³m⁻³
Replacing:
[tex]Q=-8.614x10^{-5} *1073*ln(\frac{3.6x10^{23} }{5.3x10^{28} } )=1.1ev/atom[/tex]