Answer:
diameter is 13.46 mm
Explanation:
length of rod = 200 mm = 0.2 m
compression force = 80,000 N
factor of safety = 2.5
Sy = 496 MPa
E = 71 GPa
to find out
diameter
solution
first we calculate the allowable stress i.e. = Sy/factor of safety
allowable stress = 496/ 2.5= 198.4 MPa 198.4 × [tex]10^{6}[/tex] Pa
now we calculate the diameter d by the Euler's equation i.e.
critical load = [tex]\pi ^{2}[/tex] E × moment of inertia / ( K × length )² ..........1
now we calculate the critical load i.e. allowable stress × area
here area = [tex]\pi[/tex] /4 × d²
so critical load = 198.4 × [tex]\pi[/tex] /4 × d²
and K = 1 for pin ends
and moment of inertia is = [tex]\pi[/tex] / 64 × [tex]d^{4}[/tex]
put all value in equation 1 and we get d
198.4 ×[tex]10^{6}[/tex] × [tex]\pi[/tex] /4 × d² = [tex]\pi ^{2}[/tex] 71 × [tex]10^{9}[/tex] × [tex]\pi[/tex] / 64 × [tex]d^{4}[/tex] / ( 1 × 0.2 )²
155.8229× [tex]10^{6}[/tex] × d² = 700.741912× [tex]10^{9}[/tex]× 0.049087× [tex]d^{4}[/tex] / 0.04
d=0.01346118 m
d = 13.46 mm
diameter is 13.46 mm