Solve the right triangle, ΔABC, for the missing sides and angle to the nearest tenth given angle B = 39° and side c = 13.

Respuesta :

Answer:

Part 1) [tex]b=8.2\ units[/tex]

Part 2) [tex]a=10.1\ units[/tex]

Part 3) [tex]A=51\°[/tex] and [tex]C=90\°[/tex]

Step-by-step explanation:

see the attached figure with letters to better understand the problem

step 1

Find the side b

we know that

In the right triangle ABC

The function sine of angle B is equal to divide the opposite side angle B (AC) by the hypotenuse (AB)

[tex]sin(B)=AC/AB[/tex]

we have

[tex]AB=c=13\ units[/tex]

[tex]AC=b[/tex]

[tex]B=39\°[/tex]

substitute

[tex]sin(39\°)=b/13[/tex]

solve for b

[tex]b=(13)sin(39\°)[/tex]

[tex]b=8.2\ units[/tex]

step 2

Find the side a

we know that

In the right triangle ABC

The function cosine of angle B is equal to divide the adjacent side angle B (BC) by the hypotenuse (AB)

[tex]cos(B)=BC/AB[/tex]

we have

[tex]AB=c=13\ units[/tex]

[tex]BC=a[/tex]

[tex]B=39\°[/tex]

substitute

[tex]cos(39\°)=a/13[/tex]

solve for a

[tex]a=(13)cos(39\°)[/tex]

[tex]a=10.1\ units[/tex]

step 3

Find the measure of angle A

we know that

In the right triangle ABC

[tex]C=90\°[/tex] ----> is a right angle

[tex]B=39\°[/tex]

∠A+∠B=90° ------> by complementary angles

substitute the given value

[tex]A+39\°=90\°[/tex]

[tex]A=90\°-39\°[/tex]

[tex]A=51\°[/tex]

Ver imagen calculista