Respuesta :
Answer:
Part 1) [tex]b=8.2\ units[/tex]
Part 2) [tex]a=10.1\ units[/tex]
Part 3) [tex]A=51\°[/tex] and [tex]C=90\°[/tex]
Step-by-step explanation:
see the attached figure with letters to better understand the problem
step 1
Find the side b
we know that
In the right triangle ABC
The function sine of angle B is equal to divide the opposite side angle B (AC) by the hypotenuse (AB)
[tex]sin(B)=AC/AB[/tex]
we have
[tex]AB=c=13\ units[/tex]
[tex]AC=b[/tex]
[tex]B=39\°[/tex]
substitute
[tex]sin(39\°)=b/13[/tex]
solve for b
[tex]b=(13)sin(39\°)[/tex]
[tex]b=8.2\ units[/tex]
step 2
Find the side a
we know that
In the right triangle ABC
The function cosine of angle B is equal to divide the adjacent side angle B (BC) by the hypotenuse (AB)
[tex]cos(B)=BC/AB[/tex]
we have
[tex]AB=c=13\ units[/tex]
[tex]BC=a[/tex]
[tex]B=39\°[/tex]
substitute
[tex]cos(39\°)=a/13[/tex]
solve for a
[tex]a=(13)cos(39\°)[/tex]
[tex]a=10.1\ units[/tex]
step 3
Find the measure of angle A
we know that
In the right triangle ABC
[tex]C=90\°[/tex] ----> is a right angle
[tex]B=39\°[/tex]
∠A+∠B=90° ------> by complementary angles
substitute the given value
[tex]A+39\°=90\°[/tex]
[tex]A=90\°-39\°[/tex]
[tex]A=51\°[/tex]
![Ver imagen calculista](https://us-static.z-dn.net/files/d01/9ee07a79ab461136a863dfa0147ec847.jpg)