Answer:
135°.
Explanation:
R = 75 ohm, L = 0.01 H, C = 4 micro F = 4 x 10^-6 F
Frequency is equal to the half of resonant frequency.
Let f0 be the resonant frequency.
[tex]f_{0}=\frac{1}{2\pi \sqrt{LC}}[/tex]
[tex]f_{0}=\frac{1}{2\times 3.14 \sqrt{0.01\times 4\times 10^{-6}}}[/tex]
f0 = 796.2 Hz
f = f0 / 2 = 398.1 Hz
So, XL = 2 x 3.14 x f x L = 2 x 3.14 x 398.1 x 0.01 = 25 ohm
[tex]X_{c}=\frac{1}{2\pi fC}[/tex]
Xc = 100 ohm
[tex]tan\phi = \frac{X_{L}-_{X_{C}}}{R}[/tex]
tan Ф = (25 - 100) / 75 = - 1
Ф = 135°
Thus, the phase difference is 135°.