Answer:
Intrinsic Value $43.69
Explanation:
[tex]\left[\begin{array}{ccc}Year&Dividends&Present Value\\1&1.357&1.23926940639269\\2&1.60126&1.33546840140948\\3&53.9853371428571&41.1181399520726\\Intrinsic&Value&43.6928777598748\\\end{array}\right][/tex]
The first Step is calculate the dividends:
[tex]dividends \times growth \: rate = next\: perdiod \: dividends[/tex]
We multiply 1.15 today dividends by the growth rate of 18% to get year 1
then year 1 by this growth rate to get year 2 and finally
year 2 times growth rate to get year 3 Dividends
Then on year 3 we apply the Dividends growth model
[tex]\frac{divends}{return-growth} = Intrinsic \: Value[/tex]
[tex]\frac{Year3 }{0.095-0.06} = Intrinsic \: Value[/tex]
Third, we need to bring this values to present
[tex]\frac{Nominal}{(1+rate)^{time} } = PV[/tex]
Year 1 /1.095
Year 2 /1.095^2
Year 2 /1.095^3
Final step, we add them to get the intrinsic value of the bond today.