Answer:
a)[tex]T_2=868.24 K[/tex] ,[tex]P_2=2.32 bar[/tex]
b) [tex]s_2-s_1=0.0206[/tex]KW/K
Explanation:
P=4200 KW ,mass flow rate=20 kg/s.
Inlet of turbine
[tex]T_1[/tex]=807°C,[tex]P_1=5 bar,V_1=100 m/s[/tex]
Exits of turbine
[tex]V_2=125 m/s[/tex]
Inlet of diffuser
[tex]P_3=1 bar,V_3=15 m/s[/tex]
Given that ,use air as ideal gas
R=0.287 KJ/kg-k,[tex]C_p[/tex]=1.005 KJ/kg-k
Now from first law of thermodynamics for open system at steady state
[tex]h_1+\dfrac{V_1^2}{2}+Q=h_2+\dfrac{V_2^2}{2}+w[/tex]
Here given that turbine is adiabatic so Q=0
Air treat ideal gas PV=mRT, Δh=[tex]C_p(T_2-T_1)[/tex]
[tex]w=\dfrac{P}{mass \ flow\ rate}[/tex]
[tex]w=\dfrac{4200}{20}[/tex]
w=210 KJ/kg
Now putting the values
[tex]1.005\times (273+807)+\dfrac{100^2}{2000}=1.005T_2+\dfrac{125^2}{2000}+210[/tex]
[tex]T_2=868.24 K[/tex]
Now to find pressure
We know that for adiabatic [tex]PV^\gamma =C[/tex] and for ideal gas Pv=mRT
⇒[tex]\left (\dfrac{T_2}{T_1}\right )^\gamma=\left (\dfrac{P_2}{P_1}\right )^{\gamma -1}[/tex]
[tex]\left(\dfrac{868.24}{1080}\right )^{1.4}=\left (\dfrac{P_2}{5}\right )^{1.4-1}[/tex]
[tex]P_2=2.32 bar[/tex]
For entropy generation
[tex]s_2-s_1=1.005\ln\dfrac{868.24}{1080}-0.287\ln\dfrac{2.32}{5}[/tex]
[tex]s_2-s_1=0.00103[/tex]KJ/kg_k
[tex]s_2-s_1=0.00103\times 20[/tex]KW/K
[tex]s_2-s_1=0.0206[/tex] KW/K