Respuesta :
Answer:
a). 8.67 x [tex]10^{-3}[/tex] m
b).0.3011 m
c).0.0719 m
d).0.2137 N
e).1.792 N
Explanation:
Given :
Temperature of air, T = 293 K
Air Velocity, U = 5 m/s
Length of the plate is L = 6 m
Width of the plate is b = 5 m
Therefore Dynamic viscosity of air at temperature 293 K is, μ = 1.822 X [tex]10^{-5}[/tex] Pa-s
We know density of air is ρ = 1.21 kg /[tex]m^{3}[/tex]
Now we can find the Reyonld no at x = 1 m from the leading edge
Re = [tex]\frac{\rho .U.x}{\mu }[/tex]
Re = [tex]\frac{1.21 \times 5\times 1}{1.822\times 10^{-5} }[/tex]
Re = 332052.6
Therefore the flow is laminar.
Hence boundary layer thickness is
δ = [tex]\frac{5.x}{\sqrt{Re}}[/tex]
= [tex]\frac{5\times 1}{\sqrt{332052.6}}[/tex]
= 8.67 x [tex]10^{-3}[/tex] m
a). Boundary layer thickness at x = 1 is δ = 8.67 X [tex]10^{-3}[/tex] m
b). Given Re = 100000
Therefore the critical distance from the leading edge can be found by,
Re = [tex]\frac{\rho .U.x}{\mu }[/tex]
100000 = [tex]\frac{1.21\times5\times x}{1.822 \times10^{-5}}[/tex]
x = 0.3011 m
c). Given x = 3 m from the leading edge
The Reyonld no at x = 3 m from the leading edge
Re = [tex]\frac{\rho .U.x}{\mu }[/tex]
Re = [tex]\frac{1.21 \times 5\times 3}{1.822\times 10^{-5} }[/tex]
Re = 996158.06
Therefore the flow is turbulent.
Therefore for a turbulent flow, boundary layer thickness is
δ = [tex]\frac{0.38\times x}{Re^{\frac{1}{5}}}[/tex]
= [tex]\frac{0.38\times 3}{996158.06^{\frac{1}{5}}}[/tex]
= 0.0719 m
d). Distance from the leading edge upto which the flow will be laminar,
Re = [tex]\frac{\rho \times U\times x}{\mu }[/tex]
5 X [tex]10^{5}[/tex] = [tex]\frac{1.21 \times 5\times x}{1.822\times 10^{-5}}}[/tex]
x = 1.505 m
We know that the force acting on the plate is
[tex]F_{D}[/tex] = [tex]\frac{1}{2}\times C_{D}\times \rho \times A\times U^{2}[/tex]
and [tex]C_{D}[/tex] at x= 1.505 for a laminar flow is = [tex]\frac{1.328}{\sqrt{Re}}[/tex]
= [tex]\frac{1.328}{\sqrt{5\times10 ^{5}}}[/tex]
= 1.878 x [tex]10^{-3}[/tex]
Therefore, [tex]F_{D}[/tex] = [tex]\frac{1}{2}\times C_{D}\times \rho \times A\times U^{2}[/tex]
= [tex]\frac{1}{2}\times 1.878\times 10^{-3}\times 1.21\times (5\times 1.505)\times 5^{2}[/tex]
= 0.2137 N
e). The flow is turbulent at the end of the plate.
Re = [tex]\frac{\rho \times U\times x}{\mu }[/tex]
= [tex]\frac{1.21 \times 5\times 6}{1.822\times 10^{-5} }[/tex]
= 1992316
Therefore [tex]C_{D}[/tex] = [tex]\frac{0.072}{Re^{\frac{1}{5}}}[/tex]
= [tex]\frac{0.072}{1992316^{\frac{1}{5}}}[/tex]
= 3.95 x [tex]10^{-3}[/tex]
Therefore [tex]F_{D}[/tex] = [tex]\frac{1}{2}\times C_{D}\times \rho\times A\times U^{2}[/tex]
= [tex]\frac{1}{2}\times 3.95\times 10^{-3}\times 1.21\times (5\times 6)\times 5^{2}[/tex]
= 1.792 N