Respuesta :
Answer:
The angular velocity at the beginning of the interval is [tex]\pi\sqrt{2}\ rad/s[/tex].
Explanation:
Given that,
Angular acceleration [tex]\alpha=\pi\ rad/s^2[/tex]
Angular displacement [tex]\theta=\pi\ rad[/tex]
Angular velocity [tex]\omega =2\pi\ rad/s[/tex]
We need to calculate the angular velocity at the beginning
Using formula of angular velocity
[tex]\alpha =\dfrac{\omega^2-\omega_{0}^2}{2\theta}[/tex]
[tex]\omega_{0}^2=\omega^2-2\alpha\theta[/tex]
Where, [tex]\alpha[/tex] = angular acceleration
[tex]\omega[/tex] = angular velocity
Put the value into the formula
[tex]\omega_{0}^2=(2\pi)^2-2\times\pi\times\pi[/tex]
[tex]\omega=\sqrt{2\pi^2}[/tex]
[tex]\omega_{0}=\pi\sqrt{2}\ rad/s[/tex]
Hence, The angular velocity at the beginning of the interval is [tex]\pi\sqrt{2}\ rad/s[/tex].
The angular velocity at the beginning of the interval is [tex]w=\pi\sqrt{2} \frac{rad}{sec}[/tex]
What will be the angular velocity of the wheel?
It is given that
Angular acceleration [tex]\alpha =\pi \ \frac{rad}{sec^2}[/tex]
Angular displacement [tex]\theta=\pi \ rad[/tex]
Angular velocity [tex]w=2\pi \frac{rad}{sec}[/tex]
Now for finding angular velocity at the beginning
[tex]\alpha =\dfrac{w^2-w_0^2}{2\theta}[/tex]
[tex]w_0^2=w^2-2\alpha \theta[/tex]
[tex]w_0^2=(2\pi^2)-2\times\pi \times\pi[/tex]
[tex]w_0^2=\sqrt{2\pi^2}[/tex]
[tex]w_0=\pi\sqrt{2}\frac{rad}{sec}[/tex]
Thus the angular velocity at the beginning of the interval is [tex]w=\pi\sqrt{2} \frac{rad}{sec}[/tex]
To know more about angular velocity follow
https://brainly.com/question/1452612