A wheel rotates with a constant angular acceleration of  rad/s2. During a certain time interval its angular displacement is  rad. At the end of the interval its angular velocity is 2 rad/s. Its angular velocity at the beginning of the interval is:

Respuesta :

Answer:

The angular velocity at the beginning of the interval is [tex]\pi\sqrt{2}\ rad/s[/tex].

Explanation:

Given that,

Angular acceleration [tex]\alpha=\pi\ rad/s^2[/tex]

Angular displacement [tex]\theta=\pi\ rad[/tex]

Angular velocity [tex]\omega =2\pi\ rad/s[/tex]

We need to calculate the angular velocity at the beginning

Using formula of angular velocity

[tex]\alpha =\dfrac{\omega^2-\omega_{0}^2}{2\theta}[/tex]

[tex]\omega_{0}^2=\omega^2-2\alpha\theta[/tex]

Where, [tex]\alpha[/tex] = angular acceleration

[tex]\omega[/tex] = angular velocity

Put the value into the formula

[tex]\omega_{0}^2=(2\pi)^2-2\times\pi\times\pi[/tex]

[tex]\omega=\sqrt{2\pi^2}[/tex]

[tex]\omega_{0}=\pi\sqrt{2}\ rad/s[/tex]

Hence, The angular velocity at the beginning of the interval is [tex]\pi\sqrt{2}\ rad/s[/tex].

The angular velocity at the beginning of the interval is  [tex]w=\pi\sqrt{2} \frac{rad}{sec}[/tex]

What will be the angular velocity of the wheel?

It is given that

Angular acceleration [tex]\alpha =\pi \ \frac{rad}{sec^2}[/tex]

Angular displacement  [tex]\theta=\pi \ rad[/tex]

Angular velocity [tex]w=2\pi \frac{rad}{sec}[/tex]

Now for finding angular velocity at the beginning

[tex]\alpha =\dfrac{w^2-w_0^2}{2\theta}[/tex]

[tex]w_0^2=w^2-2\alpha \theta[/tex]

[tex]w_0^2=(2\pi^2)-2\times\pi \times\pi[/tex]

[tex]w_0^2=\sqrt{2\pi^2}[/tex]

[tex]w_0=\pi\sqrt{2}\frac{rad}{sec}[/tex]

Thus the angular velocity at the beginning of the interval is  [tex]w=\pi\sqrt{2} \frac{rad}{sec}[/tex]

To know more about angular velocity follow

https://brainly.com/question/1452612

ACCESS MORE