Answer:36.4 MPa
Explanation:
External diameter([tex]D_0[/tex])=300mm
Internal diameter([tex]D_i[/tex])=200mm
Internal Pressure([tex]P_i[/tex])=14N/[tex]mm^2[/tex]
Now Hoop stress for Thick cylinders is given by
[tex]\sigma _h[/tex]=[tex]\frac{P_ir_i^2}{r_0^2-r_i^2}\left (\frac{r_0^2}{r^2}+1\right )[/tex]
Maximum hoop stress will be develop at [tex]r=r_i[/tex]
[tex]\sigma _h=36.4 MPa[/tex]
Now if we consider it as thin cylinder then Hoop stress is given by
[tex]\sigma _h[/tex]=[tex]\frac{P_{i}D}{2t}[/tex]
Where thickness =50 mm
[tex]\sigma _h[/tex]=[tex]\frac{14\times 300}{2\times 50}[/tex]
[tex]\sigma _h=42MPa[/tex]
% error=[tex]\frac{42-36.4}{36.4}[/tex][tex]\times 100[/tex]=15.38%