A thick cylindrical pipe of outside diameter 300mm and internal diameter 200mm is subjected to an internal fluid pressure of 14 N/mm2. Determine the maximum hoop stress developed in the cross section. What is the percentage error if the maximum hoop stress is calculated by the equations for thin cylinder?

Respuesta :

Answer:36.4 MPa

Explanation:

External diameter([tex]D_0[/tex])=300mm

Internal diameter([tex]D_i[/tex])=200mm

Internal Pressure([tex]P_i[/tex])=14N/[tex]mm^2[/tex]

Now Hoop stress for Thick cylinders is given by

[tex]\sigma _h[/tex]=[tex]\frac{P_ir_i^2}{r_0^2-r_i^2}\left (\frac{r_0^2}{r^2}+1\right )[/tex]

Maximum hoop stress will be develop at [tex]r=r_i[/tex]

[tex]\sigma _h=36.4 MPa[/tex]

Now if we consider it as thin cylinder then Hoop stress is given by

[tex]\sigma _h[/tex]=[tex]\frac{P_{i}D}{2t}[/tex]

Where thickness =50 mm

[tex]\sigma _h[/tex]=[tex]\frac{14\times 300}{2\times 50}[/tex]

[tex]\sigma _h=42MPa[/tex]

% error=[tex]\frac{42-36.4}{36.4}[/tex][tex]\times 100[/tex]=15.38%