Answer:
T=332.26°C.
Explanation:
Power=25 MW
Steam flow rate =50 kg/s
Inlet pressure at turbine=15 bar,Inlet velocity=61 m/s
Exits pressure=0.06 bar (at saturated vapor) ,exits velocity=130 m/s.
Now from first law for open system
[tex]h_1+\dfrac{V_1^2}{2}+Q=h_2+\dfrac{V_2^2}{2}+w[/tex]
Here given that turbine is adiabatic so Q=0
[tex]h_1+\dfrac{V_1^2}{2}=h_2+\dfrac{V_2^2}{2}+w[/tex]
[tex]h_1-h_2=\dfrac{V_2^2}{2}-\dfrac{V_1^2}{2}+w[/tex]
[tex]W=\frac{25000}{50}[/tex] KJ/kg
[tex]h_1-h_2=\dfrac{130^2}{2000}-\dfrac{61^2}{2000}+500[/tex]
[tex]h_1-h_2=506.58[/tex] kj/kg
Now from steam table
Properties of saturated steam at 0.06 bar
[tex]h_g=2566.2\frac{KJ}{Kg}[/tex]
[tex]h_g=h_2[/tex]
So [tex]h_1=2566.2+506.58\frac{KJ}{Kg}[/tex]
[tex]h_1=3072.78\frac{KJ}{Kg}[/tex]
Properties of saturated steam at 15 bar
[tex]h_g=2791.5\frac{KJ}{Kg}[/tex] ,saturation temperature=198.32°C
If super heated steam will treat as ideal gas
[tex]C_p=2.1\frac{KJ}{kg-K}[/tex]
[tex]h_1=h_g+C_pΔT[/tex]
3072.78=2791.5+2.1(T-198.32)
T=332.26°C
So inlet temperature to turbine T=332.26°C.