Answer:
by principal stress theory
t = 20.226
by total strain theory
t = 20.36
Explanation:
given data
internal radius [tex]r_{1}[/tex] = 150 mm
pressure p = 80 MPa
yield strength = 300 MPa
poisson's ratio = 0.3
a) by principal stress theory
thickness can be obtained as t
t = [tex] r_{1}\left [ (\frac{\sigma _{y} +p}{\sigma _{y} - 0.5p})^{1/3}-1 \right ][/tex]
t = = 150\left [ (\frac{300 +80}{300-0.5*80})^{1/3}-1 \right ]
t = 20.226
b) by total strain theory
m =[tex]\frac{\sigma _{y}}{p}[/tex]
m = [tex]\frac{300}{80}[/tex] = 3.75
we know that
K = [tex]\frac{r_{2}}{r_{1} }[/tex]
[tex]\frac{K^{3}+1}{K^{3}-1}= \frac{-2\mu +\sqrt{4\mu^{2}-2(1-\mu)(1-m^{^{2}}))}}{1-\mu}[/tex]
[tex]\frac{K^{3}+1}{K^{3}-1}= \frac{-2*0.3 +\sqrt{4*0.3^{2}-2(1-0.3)(1-3.75^{^{2}}))}}{1-0.3}[/tex]
[tex]\frac{K^{3}+1}{K^{3}-1}= 5.3[/tex]
k = 1.13
1.13 = [tex]\frac{r_{2}}{150 }[/tex]
[tex]r_{2}[/tex] = 170.36 mm
t = [tex]r_{2}[/tex]-[tex]r_{1}[/tex]
t = 170.36 - 150
t = 20.36