A spark ignition engine burns a fuel of calorific value 45MJkg. It compresses the air-ful mixture in accordance with PV^1.3=constant. The pressure developed in the cylinder during 30% and 70% of the compression stroke is 1.5 bar and 2.75 bar, respectively. The relative efficiency of the engine with respect to the air standard efficiency is 50%. Determine the (i) compression ratio (ii) fuel consumption per hour per kW of power generated

Respuesta :

Answer:

i). Compression ratio = 3.678

ii). fuel consumption = 0.4947 kg/hr

Explanation:

Given  :

[tex]PV^{1.3}=C[/tex]

Fuel calorific value = 45 MJ/kg

We know, engine efficiency is given by,

[tex]\eta = 1-\left ( \frac{1}{r_{c}} \right )^{1.3-1}[/tex]

where [tex]r_{c}[/tex] is compression ratio = [tex]\frac{v_{c}+v_{s}}{v_{c}}[/tex]

           [tex]r_{c}[/tex] = [tex]1+\frac{v_{s}}{v_{c}}[/tex]

where [tex]v_{c}[/tex] is compression volume

           [tex]v_{s}[/tex] is swept volume

Now it is given that swept volume at 30% of compression, 70% of the swept volume remains.

Then, [tex]v_{30}=v_{c}+0.7v_{s}[/tex]

and at 70% compression, 30% of the swept volume remains

    ∴    [tex]v_{70}=v_{c}+0.3v_{s}[/tex]  

We know,

[tex]\frac{P_{2}}{P_{1}}=\left ( \frac{V_{1}}{V_{2}} \right )^{n}[/tex]

[tex]\frac{2.75}{1.5}=\left ( \frac{v_{c}+0.7\times v_{s}}{v_{c}+0.3\times v_{s}} \right )^{1.3}[/tex]

[tex]\left ( 1.833 \right )^{\frac{1}{1.3}}=\frac{v_{c}+0.7v_{s}}{v_{c}+0.3v_{s}}\\[/tex]

[tex]1.594=\frac{v_{c}+0.7v_{s}}{v_{c}+0.3v_{s}}[/tex]

[tex]v_{c}+0.7v_{s}=1.594v_{c}+0.4782v_{s}[/tex]

[tex]0.7v_{s}-0.4782v_{s}=1.594v_{c}-v_{c}[/tex]

[tex]0.2218v_{s} = 0.594v_{c}[/tex]

[tex]v_{c}=0.3734 v_{s}[/tex]

∴   [tex]r_{c}= 1+\frac{v_{s}}{0.3734v_{s}}[/tex]

Therefore, compression ratio is [tex]r_{c}[/tex] = 3.678

Now efficiency, [tex]\eta =\left ( 1-\frac{1}{r_{c}} \right )^{0.3}[/tex]

 [tex]\eta =\left ( 1-\frac{1}{3.678} \right )^{0.3}[/tex]

 [tex]\eta =0.32342[/tex] , this is the ideal efficiency

Therefore actual efficiency, [tex]\eta_{act} =0.5\times \eta _{ideal}[/tex]

           [tex]\eta_{act} =0.5\times 0.32342[/tex]

           [tex]\eta_{act} =0.1617[/tex]

Therefore total power required = 1 kW x 3600 J

                                                    = 3600 kJ

∴ we know efficiency, [tex]\eta=\frac{W_{net}}{Q_{supply}}[/tex]

[tex]Q_{supply}=\frac{W_{net}}{\eta _{act}}[/tex]

[tex]Q_{supply}=\frac{3600}{0.1617}[/tex]

[tex]Q_{supply}=22261.78 kJ[/tex]

Therefore fuel required = [tex]\frac{22261.78}{45000}[/tex]

                                        = 0.4947 kg/hr