A rigid canister with a radius of 5 in and a height of 10 in is filled with air. The initial pressure and temperature of air in the canister are 14.7 psi and 70 °F respectively. Later, the canister is heated such that the air pressure inside it, increases to 30 psi. Calculate the total heat transferred in [Btu] to air in the canister during this process.

Respuesta :

Answer:1.458 Btu

Explanation:

Given

radius of canister[tex]\left ( r\right )=5in[/tex]

Height of canister[tex]\left ( h\right )=10 in.[/tex]

Initial pressure[tex]\left ( P_i\right )=14.7 Psi[/tex]

Initia ltemprature[tex]\left ( T_i\right )=70^{\circ}F[/tex]

Final pressure[tex]\left ( P_f\right )=30Psi[/tex]

as canister is rigid therefore change in volume is zero

therefore

[tex]\frac{P_i}{T_i}[/tex]=[tex]\frac{P_f}{T_f}[/tex]

[tex]\frac{14.7}{70}[/tex]=[tex]\frac{30}{T_f}[/tex]

[tex]T_f=142.85^{\circ}F[/tex]

volume of canister=[tex]\pi \times r^{2}\times h[/tex]

                               =[tex]\pi \times 5^{2}\times 10=250\pi[/tex]

volume of canister=12872,038.8 [tex]mm^3[/tex]

now calculating mass of air

PV=mRT

substituting values

[tex]\left ( 14.7Psi\right )\left ( 12872,038.8 mm^3\right )=m\left ( 0.287\right )\left ( 70^{\circ}F\right )[/tex]

m=21.0192 gm

Therefore heat transferred =[tex]mc_p\left ( T_f-T_i\right )[/tex]

                                             =[tex]21.0192\times 10^{-3}\times \left ( 142.857-70\right )[/tex]

                                             =1539.052J=1.458Btu

ACCESS MORE