Answer: 1.758 is the lower bound of the 95% confidence interval for the mean number of TV's.
Step-by-step explanation:
Given that,
n = 10
Number of TV each household have = {2 , 0 , 2 , 2 , 2 , 2 , 1 , 5 , 3 , 2}
Standard Deviation(SD) = 0.55
95% Confidence Interval, = 0.05
Follows normal distribution,
Mean = [tex]\bar{X} = \frac{2+0+2+2+2+2+1+5+3+2}{10}[/tex]
= [tex]\frac{21}{10}[/tex]
= 2.1
Therefore, 95% Confidence Interval are as follows:
[tex]\bar{X}\pm Z_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}[/tex]
[tex]2.1\pm 1.96 \times \frac{\0.55}{\sqrt{10}}[/tex]
Hence,
Lower bound = 2.1- 1.96 × [tex]\frac{\0.55}{\sqrt{10}}[/tex]
= 2.1- 1.96 × 0.174
= 1.758