A piston-cylinder assembly has initially a volume of 0.3 m3 of air at 25 °C. Mass of the air is 1 kg. Weights are put on the piston until the air reaches to 0.1 m3 and 1,000 °C, in which the air undergoes a polytropic process (PV" const). Assume that heat loss from the cylinder, friction of piston, kinetic and potential effects are negligible. 1) Determine the polytropic constant n. 2) Determine the work transfer in ki for this process, and diseuss its direction. 3) sketch the process in T-V (temperature-volume) diagram.

Respuesta :

Answer:

n=2.32

w= -213.9 KW

Explanation:

[tex]V_1=0.3m^3,T_1=298 K[/tex]

[tex]V_2=0.1m^3,T_1=1273 K[/tex]

Mass of air=1 kg

For polytropic process  [tex]pv^n=C[/tex] ,n is the polytropic constant.

  [tex]Tv^{n-1}=C[/tex]

  [tex]T_1v^{n-1}_1=T_2v^{n-1}_2[/tex]

[tex]298\times .3^{n-1}_1=1273\times .1^{n-1}_2[/tex]

n=2.32

Work in polytropic process given as

       w=[tex]\dfrac{P_1V_1-P_2V_2}{n-1}[/tex]

      w=[tex]mR\dfrac{T_1-T_2}{n-1}[/tex]

Now by putting the values

w=[tex]1\times 0.287\dfrac{289-1273}{2.32-1}[/tex]

w= -213.9 KW

Negative sign indicates that work is given to the system or work is done on the system.

For T_V diagram

  We can easily observe that when piston cylinder reach on new position then volume reduces and temperature increases,so we can say that this is compression process.

Ver imagen Netta00
ACCESS MORE