Respuesta :
Answer:
[tex]6\leq W\leq 8[/tex]
[tex]8\leq L\leq 10[/tex]
Step-by-step explanation:
Let the length of the rug be = L
Let the width of the rug be = W
Area =[tex]L\times W[/tex]
The length is 2 feet more than the width, so [tex]L=W+2[/tex]
Area = [tex](W+2)\times W[/tex]
= [tex]W^{2} +2W[/tex]
Now given is that the area of rug to be no smaller that 48 square feet and no bigger than 80 square feet.
This can be modeled as:
[tex]48\leq W^{2} +2W\leq 80[/tex]
Solving it separately:
[tex]48\leq W^{2} +2W[/tex]
=> [tex]0\leq W^{2}+2W \leq -48[/tex]
=> [tex]6\leq W[/tex]
[tex]W^{2} +2W-80\leq 0[/tex]
=> [tex]W\leq 8[/tex]
We have the following result:
[tex]6\leq W\leq 8[/tex]
And length will be :
[tex]6+2\leq L\leq 8+2[/tex]
[tex]8\leq L\leq 10[/tex]