Given:
Outer Diameter, OD = 90 mm
thickness, t = 0.1656 mm
Poisson's ratio, [tex]\mu[/tex] = 0.334
Strength = 320 MPa
Pressure, P =3.5 MPa
Formula Used:
1). [tex]Axial Stress_{max}[/tex] = [tex]P[\frac{r_{o}^{2} + r_{i}^{2}}{r_{o}^{2} - r_{i}^{2}}][/tex]
2). factor of safety, m = [tex]\frac{strength}{stress_{max}}[/tex]
Explanation:
Now, for Inner Diameter of cylinder, ID = OD - 2t
ID = 90 - 2(1.65) = 86.7 mm
Outer radius, [tex]r_{o}[/tex] = 45mm
Inner radius, [tex]r_{i}[/tex] = 43.35 mm
Now by using the given formula (1)
[tex]Axial Stress_{max}[/tex] = [tex]3.5[\frac{45^{2} + 43.35^{2}}{45^{2} - 43.35^{2}}][/tex]
[tex]Axial Stress_{max}[/tex] = [tex]3.5\times 26.78[/tex] =93.74 MPa
Now, Using formula (2)
factor of safety, m = \frac{320}{93.74} = 3.414