A researcher wishes to estimate the proportion of adults who have​ high-speed Internet access. What size sample should be obtained if she wishes the estimate to be within 0.04 with 90​% confidence if ​(a) she uses a previous estimate of 0.38​? ​(b) she does not use any prior​ estimates?

Respuesta :

Answer:a-396

b-420

Step-by-step explanation:

[tex]\alpha[/tex] =0.1

Margin of Error=0.04

Level of significance is z[tex]\left ( 0.1\right )=1.64[/tex]

Previous estimate[tex]\left ( p\right ) =0.38[/tex]

sample size is given by:

n=[tex]\left (\frac{Z_{\frac{\alpha }{2}}}{E}\right )p\left ( 1-p\right )[/tex]

n=[tex]\frac{1.64}{0.04}^{2}0.38\left ( 1-0.38\right )=396.0436\approx 396[/tex]

[tex]\left ( b\right )[/tex]Does not use prior estimate

Assume

[tex]\alpha [/tex]=0.1

Margin of Error=0.04

Level of significance is z[tex]\left ( 0.1\right )=1.64[/tex]

Population proportion[tex]\left ( p\right )[/tex]=0.5

n=[tex]\left (\frac{Z_{\frac{\alpha }{2}}}{E}\right )p\left ( 1-p\right )[/tex]

n=[tex]\frac{1.64}{0.04}^{2}0.5\left ( 1-0.5\right )[/tex]

n=420.25[tex]\approx 420[/tex]

ACCESS MORE