A gas in a piston-cylinder asscmbly undcrgocs a process for which the rclationship bctwcen pressurc and volumc is pV^2=constant The initial pressurc is 1 bar, the initial volume is 0.4 m^3, and the final pressure is 9 bar. Determine the work for the process, in kJ constant.

Respuesta :

Given:

[tex]pV^{2}[/tex] = constant                                   (1)

⇒ [tex]p_{1}V_{1}^{2} = p_{2}V_{2}^{2}[/tex]          (2)

[tex]p_{1} = 1 bar = 1\times 10^{5}[/tex]

[tex]p_{2} = 9 bar = 9\times 10^{5}[/tex]

[tex]V_{1} = 0.4 m^{3}[/tex]

[tex]V_{2} = ? m^{3}[/tex]

Solution:

Here, from eqn (1),  the polytropic constant is '2' ( Since, here [tex]pV^{n}[/tex] = [tex]pV^{2}[/tex] )

Now, using eqn (2), we get

[tex]V_{2}^{2} =\frac{p_{2}}{p_{1}}\times V_{1}^{2}[/tex]

putting the values in above eqn, we get-

[tex]V_{2}^{2} =\frac{9}{1}\times 0.4^{2}[/tex]

[tex]V_{2} = 1.2 m^{3}[/tex]

Now, work for the process is given by:

[tex]W = \frac{p_{2}V_{2} - p_{1}V_{1}}{1 - n}[/tex]                  (3)

where,

n = potropic constant = 2

Using Eqn (3), we get:

[tex]W = \frac{9\times 10^{5}\times 1.2 - 1\times 10^{5}\times 0.4}{1 - 2}[/tex]

W = - 240 kJ  

ACCESS MORE