Answer:
N = 38546.82 rpm
Explanation:
[tex]D_{1}[/tex] = 150 mm
[tex]A_{1}= \frac{\pi }{4}\times 150^{2}[/tex]
= 17671.45 [tex]mm^{2}[/tex]
[tex]D_{2}[/tex] = 250 mm
[tex]A_{2}= \frac{\pi }{4}\times 250^{2}[/tex]
= 49087.78 [tex]mm^{2}[/tex]
The centrifugal force acting on the flywheel is fiven by
F = M ( [tex]R_{2}[/tex] - [tex]R_{1}[/tex] ) x [tex]w^{2}[/tex] ------------(1)
Here F = ( -UTS x [tex]A_{1}[/tex] + UCS x [tex]A_{2}[/tex] )
Since density, [tex]\rho = \frac{M}{V}[/tex]
[tex]\rho = \frac{M}{A\times t}[/tex]
[tex]M = \rho \times A\times t[/tex][tex]M = 7100 \times \frac{\pi }{4}\left ( D_{2}^{2}-D_{1}^{2} \right )\times t[/tex]
[tex]M = 7100 \times \frac{\pi }{4}\left ( 250^{2}-150^{2} \right )\times 37[/tex]
[tex]M = 8252963901[/tex]
∴ [tex]R_{2}[/tex] - [tex]R_{1}[/tex] = 50 mm
∴ F = [tex]763\times \frac{\pi }{4}\times 250^{2}-217\times \frac{\pi }{4}\times 150^{2}[/tex]
F = 33618968.38 N --------(2)
Now comparing (1) and (2)
[tex]33618968.38 = 8252963901\times 50\times \omega ^{2}[/tex]
∴ ω = 4036.61
We know
[tex]\omega = \frac{2\pi N}{60}[/tex]
[tex]4036.61 = \frac{2\pi N}{60}[/tex]
∴ N = 38546.82 rpm