A flywheel made of Grade 30 cast iron (UTS = 217 MPa, UCS = 763 MPa, E = 100 GPa, density = 7100 Kg/m, Poisson's ratio = 0.26) has the following dimensions: ID = 150mm, OD = 250 mm and thickness = 37 mm. What is the rotational speed in rpm that would lead to the flywheel's fracture?

Respuesta :

Answer:

N = 38546.82 rpm

Explanation:

[tex]D_{1}[/tex] = 150 mm

[tex]A_{1}= \frac{\pi }{4}\times 150^{2}[/tex]

              = 17671.45 [tex]mm^{2}[/tex]

[tex]D_{2}[/tex] = 250 mm

[tex]A_{2}= \frac{\pi }{4}\times 250^{2}[/tex]

              = 49087.78 [tex]mm^{2}[/tex]

The centrifugal force acting on the flywheel is fiven by

F = M ( [tex]R_{2}[/tex] - [tex]R_{1}[/tex] ) x [tex]w^{2}[/tex] ------------(1)

Here F = ( -UTS x [tex]A_{1}[/tex] + UCS x [tex]A_{2}[/tex] )

Since density, [tex]\rho = \frac{M}{V}[/tex]

                        [tex]\rho = \frac{M}{A\times t}[/tex]

                        [tex]M = \rho \times A\times t[/tex][tex]M = 7100 \times \frac{\pi }{4}\left ( D_{2}^{2}-D_{1}^{2} \right )\times t[/tex]

                        [tex]M = 7100 \times \frac{\pi }{4}\left ( 250^{2}-150^{2} \right )\times 37[/tex]

                        [tex]M = 8252963901[/tex]

∴ [tex]R_{2}[/tex] - [tex]R_{1}[/tex] = 50 mm

∴ F = [tex]763\times \frac{\pi }{4}\times 250^{2}-217\times \frac{\pi }{4}\times 150^{2}[/tex]

  F = 33618968.38 N --------(2)

Now comparing (1) and (2)

[tex]33618968.38 = 8252963901\times 50\times \omega ^{2}[/tex]

∴ ω = 4036.61

We know

[tex]\omega = \frac{2\pi N}{60}[/tex]

[tex]4036.61 = \frac{2\pi N}{60}[/tex]

∴ N = 38546.82 rpm