Respuesta :
Answer:
Force on the bolt = 24.525 kN
Force on the 1st hinge = 8.35 kN
Force on the 2nd hinge = 16.17 kN
Explanation:
Given:
height = 2 m
width =1 m
depth of the door from the water surface = 1.5 m
Therefore,
[tex]\bar{y}[/tex] =1.5+1 = 2.5 m
Hydrostatic force acting on the door is
[tex]F= \rho \times g\times \bar{y}\times A[/tex]
[tex]F= 1000 \times 9.81\times 2.5\times 2\times 1[/tex]
= 49050 N
= 49.05 kN
Now finding the Moment of inertia of the door about x axis
[tex]I_{xx}=\frac{1}{12}\times b\times h^{3}[/tex]
[tex]I_{xx}=\frac{1}{12}\times1\times 2^{3}[/tex]
= 0.67
Now location of force, [tex]y^{*}[/tex]
[tex]y^{*}=\bar{y}+\frac{I_{xx}}{A\times \bar{y}}[/tex]
[tex]y^{*}=2.5+\frac{0.67}{2\times 1\times 2.5}[/tex]
= 2.634
Therefore, calculating the unknown forces
[tex]F=F_{A}+R_{B}+R_{C} = 49.05[/tex] ------------------(1)
Now since [tex]\sum M_{R_{A}}=0[/tex]
∴ [tex]R_{B}\times L+R_{C}\times L-F\times \frac{1}{2}=0[/tex]
[tex]R_{B}+R_{C}-F\times \frac{1}{2}=0[/tex]
[tex]R_{B}+R_{C}=\frac{F}{2}[/tex]
[tex]R_{B}+R_{C}=24.525[/tex] -----------------------(2)
From (1) and (2), we get
[tex]R_{A} = 49.05-24.525[/tex]
= 24.525 kN
This is the force on the Sliding bolt
Taking [tex]\sum M_{R_{C}}=0[/tex]
[tex]F\times 0.706-R_{A}\times 0.84-R_{B}\times 1.68 = 0[/tex]
[tex]49.05\times 0.706-24.525\times 0.84-R_{B}\times 1.68 = 0[/tex]
[tex]R_{B}[/tex] =8.35 kN
This is the reaction force on the 1st hinge.
Now from (1), we get
[tex]R_{C}[/tex] =16.17 kN
This is the force on the 2nd hinge.

