Answer:
6.4 rpm
Explanation:
[tex]I_{m}[/tex] = moment of inertia of merry-go-round = 275 kgm²
m = mass of the child = 23 kg
R = radius of the merry-go-round = 2.20 m
[tex]I_{c}[/tex] = moment of inertia of child after jumping on merry-go-round = mR² = (23) (2.20)² = 111.32 kgm²
Total moment of inertia after child jumps is given as
[tex]I_{f}[/tex] = [tex]I_{m}[/tex] + [tex]I_{c}[/tex] = 275 + 111.32 = 386.32 kgm²
Total moment of inertia before child jumps is given as
[tex]I_{i}[/tex] = [tex]I_{m}[/tex] = 275 kgm²
[tex]w_{i}[/tex] = initial angular speed = 9 rpm
[tex]w_{f}[/tex] = final angular speed
using conservation of angular momentum
[tex]I_{i}[/tex] [tex]w_{i}[/tex] = [tex]I_{f}[/tex] [tex]w_{f}[/tex]
(275) (9) = (386.32) [tex]w_{f}[/tex]
[tex]w_{f}[/tex] = 6.4 rpm