Answer:112.376 s
Explanation:
Given
[tex]T_i=95^{\circ}C[/tex]
[tex]T_f=35^{\circ}C[/tex]
[tex]T_\infty \left ( ambient\right )=25^{\circ}C[/tex]
[tex]h=400 watts/\left ( m^{2}^{\circ}C\right )[/tex]
[tex]c=0.385 J/\left ( m^2^{\circ}C\right )[/tex]
[tex]\rho =9 gm/cm^{3}[/tex]
Using Newton's law of cooling
[tex]\frac{T_i-T_{\infty}}{T-T_{\infty}}[/tex]=[tex]e^{\frac{ht}{\rho L_{c}c}}[/tex]
[tex]\frac{95-25}{35-25}[/tex]=[tex]e^{\frac{400\times 3\times 10^{-4}\times t}{9\times 2\times 0.385}}[/tex]
7=[tex]e^{1.7316\times 10^{-2}\times t}[/tex]
Taking log both side
t=112.376sec