A 100-mm-diametre shaft is subjected to a 10-kN.m steady bending moment, an 8-kN.m steady torque, and a 150-kN axial force. The yield strength of the shaft material is 600 MPa. Use the Tresca and the Von Mises theories to determine the safety factors for the given loadings.

Respuesta :

Answer:

Tresca FOS ,N=4.49

Von mises theory FOS N=4.27

Explanation:

Cross sectional area of shaft A=[tex]\dfrac{\pi }{4}d^2[/tex]

                    [tex]A=7.8\times 10^{-3}[/tex]

Bending stress [tex]\sigma _b=\frac{32M}{\pi d^3}[/tex] =101.91 MPa                 (M=10 KN-m)

Shear stress [tex]\sigma _s=\frac{16T}{\pi d^3}[/tex] =40.76 MPa                    (T=8 KN-m)

Axial stress[tex]\sigma _a=\dfrac{4P}{\pi d^2}[/tex]=19.23 MPa

Now find the principle stress

[tex]\sigma _1,\sigma_2=\dfrac{\sigma_a+\sigma_b}{2}\pm\sqrt {\left (\dfrac{\sigma_a+\sigma_b}{2}\right )^2+\tau ^2}[/tex]

Now put the values

[tex]\sigma _1,\sigma_2=\dfrac{19.23+101.91}{2}\pm\sqrt {\left (\dfrac{19.23+101.91}{2}\right )^2+40.76^2}[/tex]

[tex]\sigma _1=133.62 ,\sigma _2= -12.42 MPa[/tex]

From tresca theory

[tex]\tau _{max}=\dfrac{\sigma _y}{2N}[/tex]

[tex]\dfrac{\sigma _1-\sigma_2}{2}=\dfrac{600}{2N}[/tex]

N=4.49

From Von mises theory

[tex]\sigma _1^2+\sigma _2^2-\sigma _1\sigma _2=\left (\dfrac{\sigma_y}{N}\right )^2[/tex]

[tex]133.62^2+\12.42^2+133.62\times 12.42=\left(\dfrac{600}{N}\right )^2[/tex]

N=4.27

ACCESS MORE