Answer:
Tresca FOS ,N=4.49
Von mises theory FOS N=4.27
Explanation:
Cross sectional area of shaft A=[tex]\dfrac{\pi }{4}d^2[/tex]
[tex]A=7.8\times 10^{-3}[/tex]
Bending stress [tex]\sigma _b=\frac{32M}{\pi d^3}[/tex] =101.91 MPa (M=10 KN-m)
Shear stress [tex]\sigma _s=\frac{16T}{\pi d^3}[/tex] =40.76 MPa (T=8 KN-m)
Axial stress[tex]\sigma _a=\dfrac{4P}{\pi d^2}[/tex]=19.23 MPa
Now find the principle stress
[tex]\sigma _1,\sigma_2=\dfrac{\sigma_a+\sigma_b}{2}\pm\sqrt {\left (\dfrac{\sigma_a+\sigma_b}{2}\right )^2+\tau ^2}[/tex]
Now put the values
[tex]\sigma _1,\sigma_2=\dfrac{19.23+101.91}{2}\pm\sqrt {\left (\dfrac{19.23+101.91}{2}\right )^2+40.76^2}[/tex]
[tex]\sigma _1=133.62 ,\sigma _2= -12.42 MPa[/tex]
From tresca theory
[tex]\tau _{max}=\dfrac{\sigma _y}{2N}[/tex]
[tex]\dfrac{\sigma _1-\sigma_2}{2}=\dfrac{600}{2N}[/tex]
N=4.49
From Von mises theory
[tex]\sigma _1^2+\sigma _2^2-\sigma _1\sigma _2=\left (\dfrac{\sigma_y}{N}\right )^2[/tex]
[tex]133.62^2+\12.42^2+133.62\times 12.42=\left(\dfrac{600}{N}\right )^2[/tex]
N=4.27