Answer:
the flow rate of the oil is 2.5 m³/s
Explanation:
Given data
relative density (S) = 0.8
diameter (d1) = 60 mm = 0.06 m
diameter (d2) = 35 mm = 0.035 m
height (h) = 22 mm = 0.022 m
discharge coefficient (Cd) = 0.98
To find out
the flow rate of the oil
solution
we know the formula for rate of flow i.e.
flow rate = Cd a1 a2 [tex]\sqrt{2 g n }[/tex] / [tex]\sqrt{a1^{2} a2^{2} }[/tex] ...............1
here first we find area a1 and a2 i.e.
a1 = ( [tex]\pi[/tex] /4 ) × d² = ( [tex]\pi[/tex] /4 ) × 0.06² = 0.002827 m²
a2 = ( [tex]\pi[/tex] /4 ) × d² = ( [tex]\pi[/tex] /4 ) × 0.035² = 0.000962 m²
and now we find n = (density of mercury / density of oil) - 1 × h
n = ((13.56 / 0.8) - 1) × 0.022 = 0.3509
put all these value in equation 1
flow rate = Cd a1 a2 [tex]\sqrt{2 g n }[/tex] / [tex]\sqrt{a1^{2} a2^{2} }[/tex]
flow rate = 0.98× 0.002827× 0.000962 [tex]\sqrt{2*9.81*0.3509}[/tex] / [tex]\sqrt{0.002827^{2} 0.000962^{2} }[/tex]
flow rate = 2.571386 m³/s