Answer:
The company use 0 ounces of chicken and 100 ounces of grain in each bag of dog food in order to minimize cost.
Step-by-step explanation:
Let x be the number of ounces of chicken
let y be the number of ounces of grains
We are given that Chicken has 10 grams of protein and 5 grams of fat per ounce.
Chicken has protein in 1 ounce = 10
Chicken has protein in x ounces = 10x
Chicken has fat in 1 ounce = 5
Chicken has fat in x ounces = 5x
We are also given that grain has 2 grams of protein and 2 grams of fat per ounce
Grain has protein in 1 ounce = 2
Grain has protein in y ounces = 2y
Grain has fat in 1 ounce = 2
Grain has fat in y ounces =2y
Now we are given that . A bag of dog food must contain at least 200 grams of protein and at least 150 grams of fat.
So, equation becomes:
[tex]10x+2y\geq 200[/tex] ---A
[tex]5x+2y\geq 150[/tex] ---B
Since x and y represent the ounces .
So, [tex]x\geq 0[/tex] ---C and [tex]y\geq 0[/tex] ----D
Plot A ,B ,C and D on the graph
Refer the attached graph so , the corner points are (0,100),(10,50) and (30,0)
We are also given that chicken costs 10 cents per ounce and grain costs 1 cent per ounce
So, Cost function becomes : [tex]c=10x+y[/tex]
At(0,100)
[tex]c=10x+y[/tex]
[tex]c=10(0)+100[/tex]
[tex]c=100[/tex]
At(10,50)
[tex]c=10x+y[/tex]
[tex]c=10(10)+50[/tex]
[tex]c=150[/tex]
At(30,0)
[tex]c=10x+y[/tex]
[tex]c=10(30)+0[/tex]
[tex]c=300[/tex]
Minimum cost is 100 cents at (0,100)
So, the company use 0 ounces of chicken and 100 ounces of grain in each bag of dog food in order to minimize cost.