Respuesta :
Answer:
The ratio of the pressure at the top to the pressure at the bottom is [tex]\dfrac{701}{1000}[/tex]
Explanation:
Given that,
Number of molecules [tex]n= 10^24[/tex]
Mass [tex]m= 3\times10^{-26}\ kg[/tex]
Temperature = 300 K
Height [tex]h = 5\times10^{3}[/tex]
We need to calculate the ratio of the pressure at the top to the pressure at the bottom
Using barometric formula
[tex]P_{h}=P_{0}e^{\dfrac{-mgh}{kT}}[/tex]
[tex]\dfrac{P_{h}}{P_{0}}=e^{\dfrac{-mgh}{kT}}[/tex]
Where, m = mass
g = acceleration due to gravity
h = height
k = Boltzmann constant
T = temperature
Put the value in to the formula
[tex]\dfrac{P_{h}}{P_{0}}=e^{\dfrac{-3\times10^{-26}\times9.8\times5\times10^{3}}{1.3807\times10^{-23}\times300}}[/tex]
[tex]\dfrac{P_{h}}{P_{0}}=\dfrac{701}{1000}[/tex]
Hence, The ratio of the pressure at the top to the pressure at the bottom is [tex]\dfrac{701}{1000}[/tex]
Answer:
Top pressure : Bottom pressure = 701 : 1000
Explanation:
Number of molecules = n = 10^24
Height = h = 5 × 10^3 m
Mass = m = 3 × 10^-26 kg
Boltzman’s Constant = K = 1.38 × 10^-23 J/K
Temperature = T = 300K
The formula for barometer pressure is given Below:
Ph = P0 e^-(mgh/KT)
Ph/P0 = e^-(3 × 10^-26 × 9.81 × 5 × 10^3)/(1.38 × 10^-23)(300)
Ph/P0 = e^-0.355
Ph/P0 = 1/e^0.355
Ph/p0 =0.7008 = 700.8/1000 = 701/1000
Hence,
Top pressure : Bottom pressure = 701 : 1000