Answer:
Maximum velocity, v = 50 ft/s
Step-by-step explanation:
Given
1000[tex]\frac{dv}{dt}=5000-100v[/tex] -----------(1)
Dividing (1) by 1000, we get
[tex]\frac{dv}{dt}=5-\frac{v}{10}[/tex]
[tex]\frac{dv}{dt}+\frac{v}{10}=5[/tex] -----------------(2)
Now we can solve the above equation using method of integrating factors
[tex]u(t)=e^{\int \frac{1}{10}dt}[/tex]
[tex]u(t)=e^{\frac{1}{10}t}[/tex]
Now multiplying each side of (2) by integrating factor,
[tex]e^{\frac{1}{10}t}(\frac{dv}{dt})+\frac{v}{10}e^{\frac{1}{10}t}=5e^{\frac{1}{10}t}[/tex]
Combining the LHS into one differential we get,
[tex]\frac{d}{dt}\left ( e^{\frac{1}{10}t}v \right ) = \int 5e^{\frac{1}{10}t}.dt[/tex]
[tex]e^{\frac{1}{10}t}v = 50e^{\frac{1}{10}t}[/tex] + c
v(t)=50+ce
Appltying the initial condition v(0)=0, we get
[tex]0=50+ce^{-\frac{1}{10}(0)}[/tex]
0=50+c
c=-50
So the particular solution is
[tex]v(t)=50-50e^{-\frac{1}{10}t}[/tex]
[tex]v(t)=50\left (1-e^{-\frac{1}{10}t}\right)[/tex]
Therefore, the maximum velocity is 50 ft/s