A cylindrical specimen of some metal alloy having an elastic modulus of 102 GPa and an original cross-sectional diameter of 3.8 mm will experience only elastic deformation when a tensile load of 2440 N is applied. Calculate the maximum length of the specimen before deformation if the maximum allowable elongation is 0.47 mm.

Respuesta :

Answer:

[tex]l=222.803mm[/tex]

Explanation:

Given:

Elastic modulus, E = 102 GPa

Diameter, d  = 3.8mm = 0.0038 m

Applied tensile load = 2440N

Maximum allowable elongation, = 0.47mm = 0.00047

Now,

The cross-sectional area of the specimen,[tex]A_o=\frac{\pi d^2}{4}[/tex]

substituting the values in the above equation we get

[tex]A_o=\frac{\pi 0.0038^2}{4}[/tex]

or

[tex]A_o=1.134\times 10^{-5}[/tex]

now

the stress (σ) is given as:

[tex]\sigma=\frac{Force}{Area}[/tex]

and[tex]E=\frac{\sigma}{\epsilon}[/tex]

where,

[tex]\epsilon =\ Strain[/tex]

also,

[tex]\epsilon=\frac{\Delta l}{l}[/tex]

where,

[tex]l=initial \ length[/tex]

thus,

[tex]E=\frac{\frac{F}{A_o}}{\frac{\Delta l}{l}}[/tex]

or on rearranging we get,

[tex]l=\frac{E\times \Delta l\times A}{F}[/tex]

substituting the values in the above equation we get

[tex]l=\frac{102\times 10^9\times 0.00047\times 1.134\times 10^{-5}}{2440}[/tex]

or

[tex]l=0.222803m[/tex]

or

[tex]l=222.803mm[/tex]