Answer:
[tex]l=222.803mm[/tex]
Explanation:
Given:
Elastic modulus, E = 102 GPa
Diameter, d = 3.8mm = 0.0038 m
Applied tensile load = 2440N
Maximum allowable elongation, = 0.47mm = 0.00047
Now,
The cross-sectional area of the specimen,[tex]A_o=\frac{\pi d^2}{4}[/tex]
substituting the values in the above equation we get
[tex]A_o=\frac{\pi 0.0038^2}{4}[/tex]
or
[tex]A_o=1.134\times 10^{-5}[/tex]
now
the stress (σ) is given as:
[tex]\sigma=\frac{Force}{Area}[/tex]
and[tex]E=\frac{\sigma}{\epsilon}[/tex]
where,
[tex]\epsilon =\ Strain[/tex]
also,
[tex]\epsilon=\frac{\Delta l}{l}[/tex]
where,
[tex]l=initial \ length[/tex]
thus,
[tex]E=\frac{\frac{F}{A_o}}{\frac{\Delta l}{l}}[/tex]
or on rearranging we get,
[tex]l=\frac{E\times \Delta l\times A}{F}[/tex]
substituting the values in the above equation we get
[tex]l=\frac{102\times 10^9\times 0.00047\times 1.134\times 10^{-5}}{2440}[/tex]
or
[tex]l=0.222803m[/tex]
or
[tex]l=222.803mm[/tex]