Respuesta :
Answer:
μ = 0.436
Explanation:
Given:
Change in diameter, ΔD = 7 × 10⁻³ mm
Original diameter, D = 11.2 mm = 11.2 × 10⁻³ m
Applied force, P = 14100 N
Cross-section area of the specimen, A = [tex]\frac{\pi}{4}D^2[/tex] = [tex]\frac{\pi}{4}(11.2\times 10^{-3})^2[/tex]
Now,
elongation due to tensile force is given as:
[tex]\delta = \frac{PL}{AE}[/tex]
or
[tex]\frac{\delta}{L} = \frac{P}{AE}[/tex]
on substituting the values, we get
[tex]\frac{\delta}{L} = \frac{14100}{\frac{\pi}{4}(11.2\times 10^{-3})^2\times100\times 10^9}[/tex]
or
[tex]\frac{\delta}{L} = 0.00143=\epsilon_x[/tex]
where,
[tex]\epsilon_x[/tex] is the strain in the direction of force
Now,
[tex]\epsilon_z=\frac{\Delta D}{D}=\frac{7\times 10^{-3}}{11.2}=0.000625[/tex]
now, the poisson ratio, μ is given as:
[tex]\mu=\frac{\epsilon_z}{\epsilon_x}[/tex]
on substituting the values we get,
[tex]\mu=\frac{0.000625}{0.00143}=0.436[/tex]
Answer:
The Poisson's ratio for this material is 0.4370.
Explanation:
Given that,
Diameter of metal = 11.2 mm
Force = 14100 N
Reduction diameter [tex]d=7\times10^{-3}\ mm[/tex]
Elastic modulus = 100 GPa
We need to calculate the change in length
Using formula of modulus elasticity
[tex]E=\dfrac{FL}{A\Delta L}[/tex]
The change in length is
[tex]\Delta L=\dfrac{FL}{AE}[/tex]
[tex]\dfrac{\Delta L}{L}=\dfrac{14100}{\pi\times\dfrac{(11.2\times10^{-3})^2}{4}100\times10^{9}}[/tex]
[tex]\dfrac{\Delta L}{L}=0.00143[/tex]
We need to calculate the Poisson's ratio
Using formula of Poisson's ratio
[tex]\nu=\dfrac{longitudinal\ strain}{Transverse strain}[/tex]
[tex]\nu=\dfrac{-\dfrac{\Delta d}{d}}{-\dfrac{\Delta L}{L}}[/tex]
Put the value into the formula
[tex]\nu=\dfrac{\dfrac{7\times10^{-6}}{11.2\times10^{-3}}}{0.00143}[/tex]
[tex]\nu=0.4370[/tex]
Hence, The Poisson's ratio for this material is 0.4370.